average case complexity of maximum weighted independent
play

Average-case complexity of Maximum Weighted Independent Sets D. - PowerPoint PPT Presentation

Average-case complexity of Maximum Weighted Independent Sets D. Gamarnik, D. Goldberg, T. Weber (MIT) Physics of Algorithms 09, Santa Fe Wednesday, September 2, 2009 Outline Average-case analysis of computational complexity.


  1. Average-case complexity of Maximum Weighted Independent Sets D. Gamarnik, D. Goldberg, T. Weber (MIT) Physics of Algorithms ’09, Santa Fe Wednesday, September 2, 2009

  2. Outline • Average-case analysis of computational complexity. Independent Sets • A ‘corrected’ BP algorithm: the cavity expansion • Results: sufficient condition, hardness results. • Conclusion Wednesday, September 2, 2009

  3. Combinatorial Optimization with Random Costs • Goal: Study relation between randomness and computational complexity • Problems of interest: combinatorial optimization on graph - here: Maximum Weighted Independent Set • Rather than random graph, random costs • Identify relations between graph structure, cost distribution, and complexity • Techniques used: ‘message-passing’ algorithm, correlation decay analysis. Wednesday, September 2, 2009

  4. Max Weight Independent Sets • Graph (V,E), weights W ∈ R | V | + • Independent Set U: ∀ u, v ∈ U, ( u, v ) �∈ E • Max-Weight Independent Set (MWIS): given weights W, find U which maximizes � v ∈ U W v • Our setting: weights are random i.i.d variables from a joint distribution F • Arbitrary graph of bounded degree ∆ • Similar models in Gamarnik, Nowicki, Swircz [05], Sanghavi, Shah, Willsky [08] Wednesday, September 2, 2009

  5. Hardness facts • NP-hard, even for ∆ =3 • Poly-time approx algorithm of ratio : finds an IS ˜ U α such that W ( U ) U ) < α W ( ˜ • Poly-time Approximation Scheme: for all , α > 1 there exists a approx. algorithm of ratio α • Hastad [99] NP-hard to approximate within n β , β < 1 • Trevisan [01] NP-hard to approximate within ∆ 2 O ( √ log ∆ ) Wednesday, September 2, 2009

  6. A
first
result Theorem: Assume , P ( W > t ) = exp( − t ) ∆ ≤ 3 The problem can be approximated in polynomial time: for O ( | V | 2 ǫ − 2 ) any , in , there exists an algo. which finds an I.S. I ǫ > 0 such that P ( W ( I ∗ ) W ( I ) > 1 + ǫ ) < ǫ * Linear in |V| (with parallel computation, constant computation time) * Case exceptional? ∆ ≤ 3 * Case of Exponential weights exceptional? ~ Only distribution which works? ~ MWIS always easy with random weights? Wednesday, September 2, 2009

  7. Message
passing
for
MWIS !" $" %" !#" • Graphical
model
formula:on
of
MWIS:
 p ( x ) = 1 � � i ∈ V exp( w i x i ) i,j ∈ E 1 { x i + x j ≤ 1 } Z • Max‐product
(BP): � � k ∈ N i ,k � = i µ k → i (0) , e w i � � µ i → j (0) = max k ∈ N i ,k � = i µ k → i (1) µ i → j (1) = � k ∈ N i ,k � = i µ k → i (0) set M i → j = log( µ i → j (0) µ i → j (1) ) then: M i → j = max(0 , W i − � k ∈ N i ,k � = j M k → j ) 7 Wednesday, September 2, 2009

  8. LP
relaxa:on
for
MWIS
‐
connec:on
with
BP • IP
formula:on
of
MWIS: � max x i W i x i s.t. ∀ ( i, j ) ∈ E, x i + x j ≤ 1 ∀ i, x i ∈ { 0 , 1 } • LP
relaxa:on: � max x i W i x i s.t. ∀ ( i, j ) ∈ E, x i + x j ≤ 1 ∀ i, 0 ≤ x i ≤ 1 • LP
is
:ght
at
variable
i
if
 x i ∈ { 0 , 1 } • Fact
[Sanghavi,
Shah,
Willsky]:
If
BP
converges
at
variable
i,
 then
the
LP
is
:ght
at
i • Converse:
if
the
LP
is
not
:ght,
then
BP
does
not
converge IP
solu:on:
one
node,
opt.
cost:
1 LP
solu:on:
(1/2,1/2,1/2),
opt.
cost:
 3/2>1














:
LP
not
:ght 8 Wednesday, September 2, 2009

  9. The
Cavity
Expansion:
a
corrected
BP – We
try
to
compute
exactly B G ( i ) = W ( I ∗ G ) − W ( I ∗ G \{ i } ) if
>0,
then



















,
otherwise















(w.p.1)













 i ∈ I ∗ i �∈ I ∗ G G W ( I ∗ G ) = max( W i + W ( I ∗ G \{ i,j,k,l } , W ( I ∗ G \{ i } ) !" !" !" #" %" #" %" #" %" $ $ $ W ( I ∗ G \{ i } ) − 9 Wednesday, September 2, 2009

  10. The
Cavity
Expansion:
a
corrected
BP � �� – So: � B G ( i ) = max 0 , W i − W ( I ∗ G \{ i } ) − ( W ( I ∗ G \{ i,j,k,l } ) !" !" #" %" #" %" − $ $ !" $" !" $" − # # 10 Wednesday, September 2, 2009

  11. The
Cavity
Expansion:
a
corrected
BP W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j,k,l } ) = !" $" !" $" − # # W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j } ) + !" $" + !" $" − # # W ( I ∗ G \{ i,j } ) − W ( I ∗ G \{ i,j,k } ) + !" $" !" $" + − # # W ( I ∗ G \{ i,j,k } ) − W ( I ∗ G \{ i,j,k,l } ) !" $" !" $" − # # 11 Wednesday, September 2, 2009

  12. The
Cavity
Expansion:
a
corrected
BP W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j,k,l } ) = !" $" !" $" − # # W ( I ∗ G \{ i } ) − W ( I ∗ G \{ i,j } ) + !" $" + !" $" − # # � � = B G \{ i } ( j ) W ( I ∗ G \{ i,j } ) − W ( I ∗ G \{ i,j,k } ) + !" $" !" $" + − # # � � = B G \{ i,j } ( k ) W ( I ∗ G \{ i,j,k } ) − W ( I ∗ G \{ i,j,k,l } ) !" $" !" $" − # # � � = B G \{ i,j,k } ( l ) 12 Wednesday, September 2, 2009

  13. Cavity
Expansion:
Summary • Cavity
Expansion
(for
IS): B G ( i ) = max(0 , W i − B G \{ i } ( j ) − B G \{ i,j } ( k ) − B G \{ i,j,k } ( l )) • BP
(for
IS): M G ( i ) = max(0 , W i − M G ( j ) − M G ( k ) − M G ( l )) • Generaliza:on
for
arbitrary
op:miza:on • Similar
approaches
(for
coun:ng):
Weitz
(06),
 Baya:,Gamarnik,Katz,
Nair,
Tetali
(07),
Jung
and
Shah
 (07)
 • CE
always
converges,
and
is
correct
at
termina:on • caveat:
running
:me
 O ( ∆ | V | ) • Fix:
interrupt
a^er
a
fixed
number
of
itera:ons
t 13 Wednesday, September 2, 2009

  14. Correla:on
Decay
analysis • Let













be
the
r‐step
approx
of
 B r G ( i ) B G ( i ) • Defini:on:
System
exhibits
 correla:on
decay
if
 | B r G ( i ) − B G ( i ) | → 0 exponen:ally
fast
(in
r) u • Implies:
wether
u
is
in
the
MWIS
is
 asympto:cally
independent
of
the
 graph
beyond
a
certain
boundary
 14 Wednesday, September 2, 2009

  15. Correla:on
Decay
analysis • Let













be
the
r‐step
approx
of
 B r G ( i ) B G ( i ) • Defini:on:
System
exhibits
 correla:on
decay
if
 | B r G ( i ) − B G ( i ) | → 0 exponen:ally
fast
(in
r) u • Implies:
wether
u
is
in
the
MWIS
is
 asympto:cally
independent
of
the
 graph
beyond
a
certain
boundary
 15 Wednesday, September 2, 2009

  16. Correla:on
Decay
analysis • Let













be
the
r‐step
approx
of
 B r G ( i ) B G ( i ) • Defini:on:
System
exhibits
 correla:on
decay
if
 | B r G ( i ) − B G ( i ) | → 0 exponen:ally
fast
(in
r) u • Implies:
wether
u
is
in
the
MWIS
is
 asympto:cally
independent
of
the
 graph
beyond
a
certain
boundary
 16 Wednesday, September 2, 2009

  17. Correla:on
Decay
analysis • Let













be
the
r‐step
approx
of
 B r G ( i ) B G ( i ) • Defini:on:
System
exhibits
 correla:on
decay
if
 | B r G ( i ) − B G ( i ) | → 0 exponen:ally
fast
(in
r) u • Implies:
wether
u
is
in
the
MWIS
is
 asympto:cally
independent
of
the
 graph
beyond
a
certain
boundary
 I ∗ = { i : B G ( i ) > 0 } • Recall • Candidate
solu:on:
 I r = { i : B r G ( i ) > 0 } 17 Wednesday, September 2, 2009

  18. Proof
sketch
of
near‐op:mality • Introduce
‘Lyapunov’
func:on
 L G ( i ) = E [exp( − B G ( i ))] • From
CE
and
expo
weights
assump:on,
find
a
recursion
on
 L G ( i ) the












: L G ( i ) = 1 − 1 / 2( L G \{ i } ( j ) L G \{ i,j } ( k )) • This
implies
a
non‐expansion
of
the
recursion
of
 L G • Prune
a
small
frac:on





of
the
nodes δ • This
implies
a
contrac:on
of
factor















 (1 − δ ) (1 − δ ) r + δ • A^er
r
steps,
error
is
 • minimize
delta
as
a
func:on
of
r
=>
correla:on
decay • Final
steps:
prove
that
if





























,
then
 B r I r ≈ I ∗ G ( i ) ≈ B G ( i ) 18 Wednesday, September 2, 2009

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend