atmospheric moisture transport stochastic dynamics of the
play

Atmospheric moisture transport: stochastic dynamics of the - PowerPoint PPT Presentation

Atmospheric moisture transport: stochastic dynamics of the advection-condensation equation Yue-Kin Tsang School of Mathematics University of Edinburgh Jacques Vanneste Moisture parameters specific humidity of an air parcel: q = mass of water


  1. Atmospheric moisture transport: stochastic dynamics of the advection-condensation equation Yue-Kin Tsang School of Mathematics University of Edinburgh Jacques Vanneste

  2. Moisture parameters specific humidity of an air parcel: q = mass of water vapor total air mass saturation specific humidity, q s ( T ) when q > q s , condensation occurs excessive moisture precipitates out, q → q s q s ( T ) decreases with temperature T T 2 < T 1 q s ( T 1 ) q s ( T 2 )

  3. Moisture field of the atmosphere y = latitude, temperature decreases with y model : q s ( y ) = q 0 exp( − α y ) moist air parcels being advected around in the troposphere Figure 3. Schematic of the overturning circulation with emphasis on the mechanism controlling the hu- midity distribution in the subtropics. (Sherwood et al., Reviews of Geophysics, 2010)

  4. Atmospheric moisture and climate Earth’s radiation budget: absorption of incoming shortwave radiation generates heat heat carried away by outgoing longwave radiation (OLR) water vapor is a greenhouse gas that traps OLR OLR ∼ − � log q � OLR ∼ − � log[ � q � + q ′ ] � ≈ − log � q � + 1 2 � q � 2 � q ′ 2 � how fluctuation q ′ is generated? what is the probability distribution of water vapor in the atmosphere?

  5. Advection-condensation model ∂ q ∂ t + � � u · ∇ q = S − C , u = ( u , v ) S = moisture source (evaporation) C = condensation sink saturation profile: q s ( y ) = q 0 exp( − α y ) rapid condensation limit: C : q ( x , y , t ) = min [ q ( x , y , t ) , q s ( y ) ] Initial-value problem: S = 0 entire domain saturated at t = 0 : q ( x , y , 0) = q s ( y ) what is the PDF of q at location ( x , y ) and time t ? how fast does the total moisture content decay?

  6. Coherent circulation + random transport Figure 3. Schematic of the overturning circulation with emphasis on the mechanism controlling the hu- midity distribution in the subtropics. coherent circulating component: u ( X , Y ) = − Ω ( R ) Y v ( X , Y ) = Ω ( R ) X √ X 2 + Y 2 where R = random component is δ -correlated in time (Brownain): U ∼ ˙ W ( t ) where W ( t ) is a Wiener process ( ˙ W ( t ) ∼ white noise)

  7. A stochastic transport model √ d X ( t ) = u ( X , Y ) d t + 2 κ d W 1 ( t ) u = − Ω ( R ) Y √ d Y ( t ) = v ( X , Y ) d t + 2 κ d W 2 ( t ) v = Ω ( R ) X d Q ( t ) = − C ( Q , Y )d t 6 0.8 4 2 0.6 Ω 0 = 1 y 0 κ = 10 − 2 0.4 −2 0.2 −4 −6 0 −6 −4 −2 0 2 4 6 x

  8. Evolution of the moisture field √ d X ( t ) = u ( X , Y ) d t + 2 κ d W 1 ( t ) u = − Ω ( R ) Y √ d Y ( t ) = v ( X , Y ) d t + 2 κ d W 2 ( t ) v = Ω ( R ) X d Q ( t ) = − C ( Q , Y )d t t = 10 t = 250 6 6 0.08 0.08 4 4 0.06 0.06 2 2 y y 0 0 0.04 0.04 −2 −2 0.02 0.02 −4 −4 −6 −6 0 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 x x

  9. Maximum excursion of an air parcel maximum excursion , λ = max t ∈ [0 , t 1 ] y ( t ) q ( x , y , t 1 ) = q s ( λ ) statistics of q ⇐⇒ statistics of maximum excursion Pierrehumbert, Brogniez & Roca 2007 : obtain P ( q | y , t ) for an ensemble of particles execute independent random walks in a 1D domain

  10. Theory: maximum excursion statistics The backward Fokker-Planck equation: ∂ P u · ∇ P + κ ∇ 2 P , P ≡ P ( x ′ , y ′ , t | x , y , 0) ∂ t = � Boundary conditions y = λ , y = −∞ and x = ±∞ : P ( x ′ , y ′ , t | x , y , 0) = 0 Initial conditions P ( x ′ , y ′ , 0 | x , y , 0) = δ ( x − x ′ ) δ ( y − y ′ ) For a parcel starts at ( x , y ) and time τ = 0, the probability that the maximum excursion Λ = max τ ∈ [0 , t ] y ( τ ) < λ : � λ −∞ d y ′ � ∞ −∞ d x ′ P ( x ′ , y ′ , t | x , y , 0) F ( x , y , t ; λ ) = Probability density function of Λ : P Λ ( λ, t | x , y ) = ∂ F ∂λ

  11. Asymptotics: fast advection limit ∂ F u · ∇ F + κ ∇ 2 F , ∂ t = � F ( x , y , t ; λ ) F ( x , y = λ, t ; λ ) = 0 B.C.: � if y < λ 1 F ( x , y , t = 0; λ ) = I.C.: 0 otherwise Fast advection limit : ǫ = κ/ ( Ω 0 L 2 ) ≪ 1 Scaling : x → L x , t → ( L 2 /κ ) t , � u → ( Ω 0 L ) � u ∂ F ∂ t = ǫ − 1 � u · ∇ F + ∇ 2 F Expand : F = F 0 + ǫ F 1 , ǫ − 1 : � u ( r ) · ∇ F 0 = 0 ⇒ F 0 = F 0 ( r , t ; λ ) axisymmetric

  12. PDF of specific humidity ∂ F 0 ǫ − 1 : u · ∇ F 1 + ∇ 2 F 0 , ∂ t = � F 0 ( r , t ; λ ) , F 1 ( r , θ, t ; λ ) Averaging over θ with � � � u · ∇ F 1 θ = 0, we get ∂ F 0 ∂ r ∂ F 0 ∂ t = 1 � � ∂ r ∂ r r Boundary conditions: F 0 ( r , t ; λ ) = 0 at r = λ P Λ ( λ, t | r ) ≈ ∂ F 0 ∂λ q ( r , t ) = q s ( λ ) = q 0 exp( − αλ ) � � � d λ � � � P Q ( q , t | r ) = P Λ ( λ, t | r ) � � � � d q q 0 � � λ = α − 1 ln q

  13. Results: PDF of λ and q r = π /2 r = π /2 0.5 400 t = 10 0.4 t = 10 t = 10 2 300 t = 10 2 t = 10 3 t = 10 3 Λ ( λ, t | r ) Q ( q,t | r ) 0.3 t = 10 4 t = 10 4 200 0.2 P P 100 0.1 0 0 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 q / q s (r ) λ − r � � 1 P Q ( q , t | r ) = α q P Λ ( λ, t | r ) q 0 λ = α − 1 ln q

  14. Results: decay of total moisture content � � Q ( t ) = 1 ¯ d q q P Q ( q , t | r ) d A A -1 10 simulation theory -2 10 asymptotics t 1/6 exp( − 0.59 t 1/3 ) -3 10 ( t ) _ Q -4 10 -5 10 -6 10 0 2000 4000 8000 10000 6000 time

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend