atlas inner b layer co 2 cooling system
play

Atlas Inner B-Layer CO 2 cooling system (Can we use Marco?) 01 March - PowerPoint PPT Presentation

bverlaat@nikhef.nl bverlaat@nikhef.nl Atlas Inner B-Layer CO 2 cooling system (Can we use Marco?) 01 March 2012 Bart Verlaat Jan Godlewski 1 bverlaat@nikhef.nl Atlas Inner B-Layer (IBL) IBL detector: 80mm x 800mm 1 kW @ -40C


  1. bverlaat@nikhef.nl bverlaat@nikhef.nl Atlas Inner B-Layer CO 2 cooling system (Can we use Marco?) 01 March 2012 Bart Verlaat Jan Godlewski 1

  2. bverlaat@nikhef.nl Atlas Inner B-Layer (IBL) IBL detector: • Ø80mm x 800mm • 1 kW @ -40°C • 14 staves with 1 cooling pipe Pixel detector chips (71 watt/stave) New detector with smaller beam Carbon foam structure 2 pipe in space of current beam pipe 1.5mm ID titanium cooling pipe

  3. bverlaat@nikhef.nl IBL cooling layout in Atlas Vacuum insulated Accessible manifolds concentric transfer tube Vacuum insulated capillaries Tile Calorie LAR LAR Capillaries in IDep Tracking LAR 14 IBL staves 3

  4. Atlas IBL cooling system bverlaat@nikhef.nl Vacuum insulated concentric tube Junction box @ Muon Sector 5 (Accessible) (~13 m) PM027 PR007 PR008 PT007 PT008 TT007 TT008 ⅜” HX007 8 7 Transfer tubes PR017 VL008 HX016 PT017 FL008 (~100m) TT017 HT011 17 VL009 Dummy load (testing only) VL016 16 HT011.temp Detector boundary LAR Cryo area HT011.thsw PR016 PR009 ½” PT016 PT009 9 TT016 ⅜” TT009 ⅜” VL011 VL010 Cooling VL017 FL010 ½” Unit A VL025 Vacuum lines PR010 VL006 10 PT010 TT010 Vacuum Cooling insulation VL018 15 Unit B Vacuum VL007 insulation Tile calorie meter 2 Marco’s? LAR calorie meter 11 14 Tracking detectors 12 13 14 IBL staves (7 flow pairs) (7x A- › C flow / 7x C- ›A flow) 4 Dry volume USA-15

  5. IBL Cooling pipes layout bverlaat@nikhef.nl (C-Side view) Foam insulated junction piping (With condensation channels) Vacuum insulated straight concentric transfer tube Vacuum insulated capillaries LAR station To USA-15 cavern Foam insulated transfer tubing (Concentric TBV) Inlet Manifold Inlet Capillaries (Outlets on the A-side) 5

  6. Transfer tube routing bverlaat@nikhef.nl to cooling plant • A nearly horizontal path from cooling plant to detector. Accumulated eight difference =7m => 1.4°C dT • Ca. 100 long path (1 way) • Vacuum insulation in detector to avoid condensation problems – Needs serious research, just a concept now! • Insulation will be foam outside detector from LAR cryogenic plant towards CO 2 cooling plant. 6

  7. bverlaat@nikhef.nl IBL cooling specs IBL temperature and pressure profile. MF=1g/s, Tsp=-40ºC, Q=71.43, x end =0.31 -20 15 T Structure (ºC) T Tube wall (ºC) T Fluid (ºC) -25 14 P Fluid (Bar) Temperature (ºC) -30 13 Pressure(Bar) -35 12 -40 11 1 2 3 4 5 6 7 -45 10 0 5 10 15 20 25 Branch length (m) The 1kW power and sensors at -20°C require a CO 2 temperature of -40°C (2-phase) / -50°C (Liquid) 7

  8. IBL transfer tube bverlaat@nikhef.nl Liquid pressure drop of an Atlas IBL supply tube Fluid=CO 2 , T=-40 ºC, Length=100 m, Angle=0º, Roughness=0 mu, Po=10 bar 0.25" OD, t=0.035" 2 0.3125" OD, t=0.035" • IBL tube: Concentric 3 / 4 ” 0.375" OD, t=0.035" Tur 1.5 outer x 5 / 16 ” inner tube. Pressure drop (bar) Tur • Heat leak estimation: 1kW 1 Tur Tur => Marco cooling capacity: Tur 0.5 Tur 2.5 kW @-50°C Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Tur Lam Tur Tur Tur Tur 0 Lam Lam Lam Lam Lam 0 2 4 6 8 10 12 14 Mass flow (g/s) 2-phase pressure drop of an Atlas IBL return tube T fluid =-40 ºC, T amb =22 ºC, Ki=0.04 W/mK, Length=100 m, Angle=0º 25 3000 Fluid=CO 2 , MF=14 g/s, T=-40 ºC, Length=100 m, Angle=0º 0.75" OD, t=0.049" 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 QE(kW) Surface temperature 2 Concentric 0.75" OD, t=0.049" with 0.3125" center tube 20 Heat pick up 2500 0.7 1.6 Heat pick-up (W) 0.6 SW Surface temperature (ºC) 15 2000 Temperature drop (ºC) Pressure drop (bar) SW 0.5 1.2 SW 10 1500 0.4 SW 0.3 0.8 5 1000 SW SW 0.2 0.4 SW 0 500 0.1 SW Strat Tur 8 0 0 -5 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 10 20 30 40 50 60 70 Vapor Quality (-) Insulation thickness (mm)

  9. bverlaat@nikhef.nl IBL Accumulator sizing Ral s =2.01 • Concentric 3 / 4 ” outer x 5 / 16 ” 100ºC 75ºC 140 50ºC 25ºC -25ºC C C º º 0 0 5 inner tube *100m = 20 liter => - 120 30ºC C C Ratio Accu/loop = 2x => 40 º MOP º 2 0 100 2 5 - liter accumulator. 80 Pressure (Bar) T liq 25ºC 60 x=0.8 x=0.4 x=0.2 40 • Does this fit in  =0.9 20  =0.8  =0.6  =0.4  =0.2 Marco? 0 ASC=482  liq =968 ABF=290 ASF=771 0 200 400 600 800 1000 1200 Density (kg/m 3 ) 9

  10. IBL accumulator bverlaat@nikhef.nl estimate 9 liter 40 liter 54 cm 94 cm 110 cm 150 cm 24 cm 14.6 cm Marco 27 cm frame limit Marco accumulator IBL accumulator 10

  11. IBL needs a Lewa bverlaat@nikhef.nl membrane pump (instead of the Marco gear pump) 11

  12. Marco adjustments bverlaat@nikhef.nl Current 9ltr Marco Accumulator Foreseen 40 liter Lewa IBL Accumulator membrane pump 12

  13. bverlaat@nikhef.nl Atlas IBL plant space 1.9 m • New assigned IBL plant space has a limited height: ~1.9m (but sufficient floor space) • Using Marco => No chiller underneath • Possible require more space for lewa membrane pump swap – Not sure what impact is on Marco design 13

  14. Marco upgrade to IBbeLle bverlaat@nikhef.nl Is this what we need? VL128 VL129 VL128 VL129 PR119 PR119 PT119 PT119 PM129 LT119 PM129 vent evacuate PR118 LT119 vent evacuate PR118 PT118 PT118 ½” ⅜” TT118 CO2 ⅜” TT118 Accumulator AC119 18 ½” HX212 18 ⅜” AC119 HX212 HX119 CO 2 from experiment HX119 VL118 CO 2 from experiment ⅜” VL118 VL106 VL105 CO 2 to experiment PR106 VL106 VL105 CO 2 to experiment by-pass HT119.temp PR106 HT119.thsw 6 7 ⅜” 17 ⅜” by-pass HT119.temp HT119 HT119.thsw ⅜” 6 7 ¼” 17 HT119 fill TT105 5 ½” HT104 ⅜” fill TT105 5 ⅜” ⅜” FL123 HT104 HT104.temp ¼” FL123 VL123 ⅜” HT104.thsw HT104.temp VL123 HT104.thsw ¼” ⅜” ½” HX208 FT103 4 19 ¼” ¼” ⅜” HX208 PR104 VL103 HT102 FT103 4 19 PT104 TT104 PR104 VL103 VL103 HT102.temp CO2 PT104 FL103 HT102.thsw condenser HX101 TT104 ⅜” 3 ⅜” 2 ¼” HX101 PR103 VL104 PT103 ¼” TT101 PT103 PM101 FL103 VL101 VL122 TT101 VL12 PM102 2 3 PM101 1 1 CO2 pumps Marco IBbeLle? 14

  15. IBL, Marco, IBbeLle and bverlaat@nikhef.nl the future • We are intensifying the roadmap to the creation of the IBL CO 2 cooling system design and construction. – Are the IBL specs and Belle spec sufficiently similar for a common Marco (IBbeLle) approach? – Are our timelines similar? – If so how do we share the work and how do we organize each other? • Important items for a common IBbeLle approach: – Redundancy – Control framework – AO? • Serious attention is needed for both Belle and IBL on the following: – Vacuum insulation, this is the only option and needs more research to understand. – AO? 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend