asymmetry helps estimation and inference from asymmetric
play

Asymmetry Helps: Estimation and Inference from Asymmetric and - PowerPoint PPT Presentation

Asymmetry Helps: Estimation and Inference from Asymmetric and Heteroscedastic Noise Chen Cheng with Yuxin Chen (Princeton), Jianqing Fan (Princeton), Yuting Wei (CMU) Department of Statistics, Stanford University 1/28 C. Cheng, Y. Wei, Y.


  1. Asymmetry Helps: Estimation and Inference from Asymmetric and Heteroscedastic Noise Chen Cheng with Yuxin Chen (Princeton), Jianqing Fan (Princeton), Yuting Wei (CMU) Department of Statistics, Stanford University 1/28

  2. C. Cheng, Y. Wei, Y. Chen, “Inference for linear forms of eigenvectors under minimal eigenvalue separation: Asymmetry and heteroscedasticity”, arXiv:2001.04620, 2020. Y. Chen, C. Cheng, J. Fan, “Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices”, arXiv:1811.12804, 2018. (alphabetical order) — accepted to Annals of Statistics, 2020. 2/28

  3. 1 Introduction 2 Estimation 3 Inference 2/28

  4. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l 3/28

  5. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix H : [ H ij ] 1 ≤ i,j ≤ n independent noise. • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l • Observed data: M = M ⋆ + H . 3/28

  6. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix H : [ H ij ] 1 ≤ i,j ≤ n independent noise. • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l • Observed data: M = M ⋆ + H . • Applications: • Matrix denoising and completion. • Stochastic block model. • Ranking from pairwise comparisons. • ... 3/28

  7. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix H : [ H ij ] 1 ≤ i,j ≤ n independent noise. • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l • Observed data: M = M ⋆ + H . • Goal : retrieve eigenvalue & eigenvector information from M . 3/28

  8. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix H : [ H ij ] 1 ≤ i,j ≤ n independent noise. • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l • Observed data: M = M ⋆ + H . • Goal : retrieve eigenvalue & eigenvector information from M . • Quantity of interest : eigenvalue error; eigenvector ℓ 2 error, ℓ ∞ error, error for any linear function a ⊤ u l . 3/28

  9. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix H : [ H ij ] 1 ≤ i,j ≤ n independent noise. • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l • Observed data: M = M ⋆ + H . • Goal : retrieve eigenvalue & eigenvector information from M . • Quantity of interest : eigenvalue error; eigenvector ℓ 2 error, ℓ ∞ error, error for any linear function a ⊤ u l . • Strategy: • SVD on M or � M + M ⊤ � / 2 ? 3/28

  10. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix H : [ H ij ] 1 ≤ i,j ≤ n independent noise. • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l • Observed data: M = M ⋆ + H . • Goal : retrieve eigenvalue & eigenvector information from M . • Quantity of interest : eigenvalue error; eigenvector ℓ 2 error, ℓ ∞ error, error for any linear function a ⊤ u l . • Strategy: • SVD on M or � M + M ⊤ � / 2 ? • Eigen-decomposition on M ? 3/28

  11. Problem: eigenvalue & eigenvector estimation M ⋆ : symmetric low-rank matrix H : [ H ij ] 1 ≤ i,j ≤ n independent noise. • Rank- r matrix: M ⋆ = � r l =1 λ ⋆ l u ⋆ l u ⋆ ⊤ ∈ R n × n . l • Observed data: M = M ⋆ + H . • Goal : retrieve eigenvalue & eigenvector information from M . • Quantity of interest : eigenvalue error; eigenvector ℓ 2 error, ℓ ∞ error, error for any linear function a ⊤ u l . • Strategy: • SVD on M or � M + M ⊤ � / 2 ? (Popular strategies) • Eigen-decomposition on M ? (Much less widely used) 3/28

  12. A curious experiment: Gaussian noise • M = u ⋆ u ⋆ ⊤ + H , H i,j i.i.d. N (0 , σ 2 ) , σ = 1 √ n log n . • Estimate the leading eigenvalue λ ⋆ = 1 . • SVD on M vs Eigen-decomposition on M . 4/28

  13. A curious experiment: Gaussian noise • M = u ⋆ u ⋆ ⊤ + H , H i,j i.i.d. N (0 , σ 2 ) , σ = 1 √ n log n . • Estimate the leading eigenvalue λ ⋆ = 1 . • SVD on M vs Eigen-decomposition on M . 10 0 SVD � λ svd − λ ? � � � j 6 ! 6 ? j 10 -1 10 -2 200 400 600 800 1000 1200 1400 1600 1800 2000 n 4/28

  14. A curious experiment: Gaussian noise • M = u ⋆ u ⋆ ⊤ + H , H i,j i.i.d. N (0 , σ 2 ) , σ = 1 √ n log n . • Estimate the leading eigenvalue λ ⋆ = 1 . • SVD on M vs Eigen-decomposition on M . 10 0 10 0 Eigen-Decomposition SVD SVD � λ svd − λ ? � � � j 6 ! 6 ? j j 6 ! 6 ? j 10 -1 10 -1 10 -2 10 -2 � λ eigs − λ ? � � . 5 200 200 400 400 600 600 800 800 1000 1000 1200 1200 1400 1400 1600 1600 1800 1800 2000 2000 � n n n 4/28

  15. A curious experiment: Gaussian noise • M = u ⋆ u ⋆ ⊤ + H , H i,j i.i.d. N (0 , σ 2 ) , σ = 1 √ n log n . • Estimate the leading eigenvalue λ ⋆ = 1 . • SVD on M vs Eigen-decomposition on M . 10 0 10 0 10 0 Eigen-Decomposition Eigen-Decomposition SVD SVD SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j j 6 ! 6 ? j j 6 ! 6 ? j 10 -1 10 -1 10 -1 � λ svd − λ ? � 2 . 5 � p n � 10 -2 10 -2 10 -2 � λ eigs − λ ? � � . 5 200 200 200 400 400 400 600 600 600 800 800 800 1000 1000 1000 1200 1200 1200 1400 1400 1400 1600 1600 1600 1800 1800 1800 2000 2000 2000 � n n n n 4/28

  16. A curious experiment: Gaussian noise • M = u ⋆ u ⋆ ⊤ + H , H i,j i.i.d. N (0 , σ 2 ) , σ = 1 √ n log n . • Estimate the leading eigenvalue λ ⋆ = 1 . • SVD on M vs Eigen-decomposition on M . 10 0 10 0 10 0 Eigen-Decomposition Eigen-Decomposition SVD SVD SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j j 6 ! 6 ? j j 6 ! 6 ? j 10 -1 10 -1 10 -1 � λ svd − λ ? � 2 . 5 � p n � 10 -2 10 -2 10 -2 � λ eigs − λ ? � � . 5 200 200 200 400 400 400 600 600 600 800 800 800 1000 1000 1000 1200 1200 1200 1400 1400 1400 1600 1600 1600 1800 1800 1800 2000 2000 2000 � n n n n • Wait! But we should know everything under Gaussian noise! 4/28

  17. A curious experiment: Gaussian noise • Indeed, for SVD from i.i.d. Gaussian noise, one can use a corrected singular value (Benaych-Georges and Nadakuditi, 2012) λ svd , c = λ svd − nσ 2 = f ( σ, λ svd ) . 5/28

  18. A curious experiment: Gaussian noise • Indeed, for SVD from i.i.d. Gaussian noise, one can use a corrected singular value (Benaych-Georges and Nadakuditi, 2012) λ svd , c = λ svd − nσ 2 = f ( σ, λ svd ) . 10 0 Eigen-Decomposition SVD Corrected SVD j 6 ! 6 ? j 10 -1 10 -2 100 200 300 400 500 600 700 800 900 1000 n 5/28

  19. A curious experiment: Gaussian noise • Indeed, for SVD from i.i.d. Gaussian noise, one can use a corrected singular value (Benaych-Georges and Nadakuditi, 2012) λ svd , c = λ svd − nσ 2 = f ( σ, λ svd ) . • For heteroscedastic Gaussian noise, the correction formula is far more complicated (Bryc et al., 2018) 5/28

  20. j 6 ! 6 ? j n Another experiment: matrix completion • What if the noise is heteroscedastic we do not have prior knowledge about? � p M ⋆ 1 ij , with prob. p, • M ⋆ = u ⋆ u ⋆ ⊤ , M ij = p = 3 log n . n 0 , else , H = M − M ⋆ . 6/28

  21. Another experiment: matrix completion • What if the noise is heteroscedastic we do not have prior knowledge about? � p M ⋆ 1 ij , with prob. p, • M ⋆ = u ⋆ u ⋆ ⊤ , M ij = p = 3 log n . n 0 , else , H = M − M ⋆ . 10 0 Eigen-Decomposition SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j 10 -1 � λ svd − λ ? � 2 . 5 � p n � 10 -2 � λ eigs − λ ? � . 5 � 200 400 600 800 1000 1200 1400 1600 1800 2000 � n n 6/28

  22. Another experiment: matrix completion • What if the noise is heteroscedastic we do not have prior knowledge about? � p M ⋆ 1 ij , with prob. p, • M ⋆ = u ⋆ u ⋆ ⊤ , M ij = p = 3 log n . n 0 , else , H = M − M ⋆ . 10 0 Eigen-Decomposition SVD � λ svd − λ ? � � Rescaled SVD Error � j 6 ! 6 ? j 10 -1 � λ svd − λ ? � 2 . 5 � p n � 10 -2 � λ eigs − λ ? � . 5 � 200 400 600 800 1000 1200 1400 1600 1800 2000 � n n • Eigen-decomposition is nearly unbiased regardless of the noise distribution! 6/28

  23. 2 ) dist ( u 2 ; u ? Dimension n One more experiment: heteroscedastic Gaussian noise � � � � • M = u ⋆ 1 u ⋆ ⊤ + 0 . 95 u ⋆ 2 u ⋆ ⊤ + H , u ⋆ 1 1 n/ 2 ; u ⋆ 1 1 n/ 2 1 = 2 = √ n √ n 1 2 1 n/ 2 − 1 n/ 2 �� � 100 11 ⊤ � 11 ⊤ • [ Var ( H ij )] i,j ≈ 1 1 0 + n log n 0 0 7/28

  24. 2 ) dist ( u 2 ; u ? Dimension n One more experiment: heteroscedastic Gaussian noise � � � � • M = u ⋆ 1 u ⋆ ⊤ + 0 . 95 u ⋆ 2 u ⋆ ⊤ + H , u ⋆ 1 1 n/ 2 ; u ⋆ 1 1 n/ 2 1 = 2 = √ n √ n 1 2 1 n/ 2 − 1 n/ 2 �� � 100 11 ⊤ � 11 ⊤ • [ Var ( H ij )] i,j ≈ 1 1 0 + n log n 0 0 • Estimate u ⋆ 2 by eigen-decomposition on the symmetrized data ( M + M ⊤ ) / 2 and the original data M . 7/28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend