arithmetic aspects of short random walks
play

Arithmetic aspects of short random walks Number theory lunch - PowerPoint PPT Presentation

Arithmetic aspects of short random walks Number theory lunch seminar, MPIM Armin Straub February 13, 2013 University of Illinois & Max-Planck-Institut at UrbanaChampaign f ur Mathematik, Bonn Based on joint work with : Jon


  1. Moments of random walks The s th moment W n ( s ) of the density p n : DEF � ∞ � � s d x � � e 2 πix 1 + . . . + e 2 πix n � x s p n ( x ) d x = W n ( s ) := [0 , 1] n 0 • On a desktop: W 3 (1) ≈ 1 . 57459723755189365749 W 4 (1) ≈ 1 . 79909248 W 5 (1) ≈ 2 . 00816 Arithmetic aspects of short random walks Armin Straub 10 / 38

  2. Moments of random walks The s th moment W n ( s ) of the density p n : DEF � ∞ � � s d x � � e 2 πix 1 + . . . + e 2 πix n � x s p n ( x ) d x = W n ( s ) := [0 , 1] n 0 • On a desktop: W 3 (1) ≈ 1 . 57459723755189365749 W 4 (1) ≈ 1 . 79909248 W 5 (1) ≈ 2 . 00816 • On a supercomputer: Lawrence Berkeley National Laboratory, 256 cores W 5 (1) ≈ 2 . 0081618 Arithmetic aspects of short random walks Armin Straub 10 / 38

  3. Moments of random walks The s th moment W n ( s ) of the density p n : DEF � ∞ � � s d x � e 2 πix 1 + . . . + e 2 πix n � � x s p n ( x ) d x = W n ( s ) := [0 , 1] n 0 • On a desktop: W 3 (1) ≈ 1 . 57459723755189365749 W 4 (1) ≈ 1 . 79909248 W 5 (1) ≈ 2 . 00816 • On a supercomputer: Lawrence Berkeley National Laboratory, 256 cores W 5 (1) ≈ 2 . 0081618 • Hard to evaluate numerically to high precision. Monte-Carlo integration gives approximations with an asymptotic error of √ O (1 / N ) where N is the number of sample points. Arithmetic aspects of short random walks Armin Straub 10 / 38

  4. Moments of random walks The s th moment W n ( s ) of the density p n : DEF � ∞ � � s d x � � e 2 πix 1 + . . . + e 2 πix n � x s p n ( x ) d x = W n ( s ) := [0 , 1] n 0 n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 2 1 . 273 2 . 000 3 . 395 6 . 000 10 . 87 20 . 00 37 . 25 3 1 . 575 3 . 000 6 . 452 15 . 00 36 . 71 93 . 00 241 . 5 4 1 . 799 4 . 000 10 . 12 28 . 00 82 . 65 256 . 0 822 . 3 5 2 . 008 5 . 000 14 . 29 45 . 00 152 . 3 545 . 0 2037 . 6 2 . 194 6 . 000 18 . 91 66 . 00 248 . 8 996 . 0 4186 . Arithmetic aspects of short random walks Armin Straub 10 / 38

  5. Moments of random walks The s th moment W n ( s ) of the density p n : DEF � ∞ � � s d x � � e 2 πix 1 + . . . + e 2 πix n � x s p n ( x ) d x = W n ( s ) := [0 , 1] n 0 n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 2 1 . 273 2 . 000 3 . 395 6 . 000 10 . 87 20 . 00 37 . 25 3 1 . 575 3 . 000 6 . 452 15 . 00 36 . 71 93 . 00 241 . 5 4 1 . 799 4 . 000 10 . 12 28 . 00 82 . 65 256 . 0 822 . 3 5 2 . 008 5 . 000 14 . 29 45 . 00 152 . 3 545 . 0 2037 . 6 2 . 194 6 . 000 18 . 91 66 . 00 248 . 8 996 . 0 4186 . W 2 (1) = 4 π Arithmetic aspects of short random walks Armin Straub 10 / 38

  6. Moments of random walks The s th moment W n ( s ) of the density p n : DEF � ∞ � � s d x � � e 2 πix 1 + . . . + e 2 πix n � x s p n ( x ) d x = W n ( s ) := [0 , 1] n 0 n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 2 1 . 273 2 . 000 3 . 395 6 . 000 10 . 87 20 . 00 37 . 25 3 1 . 575 3 . 000 6 . 452 15 . 00 36 . 71 93 . 00 241 . 5 4 1 . 799 4 . 000 10 . 12 28 . 00 82 . 65 256 . 0 822 . 3 5 2 . 008 5 . 000 14 . 29 45 . 00 152 . 3 545 . 0 2037 . 6 2 . 194 6 . 000 18 . 91 66 . 00 248 . 8 996 . 0 4186 . W 2 (1) = 4 W 3 (1) = 1 . 57459723755189 . . . = ? π Arithmetic aspects of short random walks Armin Straub 10 / 38

  7. Moments of random walks The s th moment W n ( s ) of the density p n : DEF � ∞ � � s d x � � e 2 πix 1 + . . . + e 2 πix n � x s p n ( x ) d x = W n ( s ) := [0 , 1] n 0 n s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 2 1 . 273 2 . 000 3 . 395 6 . 000 10 . 87 20 . 00 37 . 25 3 1 . 575 3 . 000 6 . 452 15 . 00 36 . 71 93 . 00 241 . 5 4 1 . 799 4 . 000 10 . 12 28 . 00 82 . 65 256 . 0 822 . 3 5 2 . 008 5 . 000 14 . 29 45 . 00 152 . 3 545 . 0 2037 . 6 2 . 194 6 . 000 18 . 91 66 . 00 248 . 8 996 . 0 4186 . W 2 (1) = 4 W 3 (1) = 1 . 57459723755189 . . . = ? π Arithmetic aspects of short random walks Armin Straub 10 / 38

  8. Even moments n s = 0 s = 2 s = 4 s = 6 s = 8 s = 10 Sloane’s 2 1 2 6 20 70 252 A000984 3 1 3 15 93 639 4653 A002893 4 1 4 28 256 2716 31504 A002895 5 1 5 45 545 7885 127905 A169714 6 1 6 66 996 18306 384156 A169715 EG k � k � 2 � 2 j � � W 3 (2 k ) = Ap´ ery-like j j j =0 k � k � 2 � 2 j �� 2( k − j ) � � W 4 (2 k ) = Domb numbers j j k − j j =0 Arithmetic aspects of short random walks Armin Straub 11 / 38

  9. A combinatorial formula for the even moments • s th moment W n ( s ) of the density p n : � � s d x � � e 2 πix 1 + . . . + e 2 πix n � W n ( s ) = [0 , 1] n � � 2 THM k � Borwein- W n (2 k ) = Nuyens- a 1 , . . . , a n S-Wan a 1 + ··· + a n = k 2010 Arithmetic aspects of short random walks Armin Straub 12 / 38

  10. A combinatorial formula for the even moments • s th moment W n ( s ) of the density p n : � � s d x � � e 2 πix 1 + . . . + e 2 πix n � W n ( s ) = [0 , 1] n � � 2 THM k � Borwein- W n (2 k ) = Nuyens- a 1 , . . . , a n S-Wan a 1 + ··· + a n = k 2010 • W n (2 k ) counts the number of abelian squares : strings xy of length 2 k from an alphabet with n letters such that y is a permutation of x . • Introduced by Erd˝ os and studied by others. EG acbc ccba is an abelian square. It contributes to W 3 (8) . L. B. Richmond and J. Shallit Counting abelian squares The Electronic Journal of Combinatorics, Vol. 16, 2009. Arithmetic aspects of short random walks Armin Straub 12 / 38

  11. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b Arithmetic aspects of short random walks Armin Straub 13 / 38

  12. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b Arithmetic aspects of short random walks Armin Straub 13 / 38

  13. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b � 2 k � Hence W 2 (2 k ) = . k Arithmetic aspects of short random walks Armin Straub 13 / 38

  14. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b � 2 k � Hence W 2 (2 k ) = . k � 1 � With k = 1 1! Γ 2 (3 / 2) = 4 1 2 : = (1 / 2)! 2 = 1 / 2 π Arithmetic aspects of short random walks Armin Straub 13 / 38

  15. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b � 2 k � Hence W 2 (2 k ) = . k � 1 � With k = 1 1! Γ 2 (3 / 2) = 4 1 2 : = (1 / 2)! 2 = 1 / 2 π THM If f ( z ) is analytic for Re ( z ) � 0 , “nice”, and Carlson f (0) = 0 , f (1) = 0 , f (2) = 0 , . . . , then f ( z ) = 0 identically. Arithmetic aspects of short random walks Armin Straub 13 / 38

  16. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b � 2 k � Hence W 2 (2 k ) = . k � 1 � With k = 1 1! Γ 2 (3 / 2) = 4 1 2 : = (1 / 2)! 2 = 1 / 2 π THM If f ( z ) is analytic for Re ( z ) � 0 , “nice”, and Carlson f (0) = 0 , f (1) = 0 , f (2) = 0 , . . . , then f ( z ) = 0 identically. | f ( z ) | � Ae α | z | , and | f ( iy ) | � Be β | y | for β < π Arithmetic aspects of short random walks Armin Straub 13 / 38

  17. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b � 2 k � Hence W 2 (2 k ) = . k � 1 � With k = 1 1! Γ 2 (3 / 2) = 4 1 2 : = (1 / 2)! 2 = 1 / 2 π THM If f ( z ) is analytic for Re ( z ) � 0 , “nice”, and Carlson f (0) = 0 , f (1) = 0 , f (2) = 0 , . . . , then f ( z ) = 0 identically. | f ( z ) | � Ae α | z | , and • W n ( s ) is nice! | f ( iy ) | � Be β | y | for β < π Arithmetic aspects of short random walks Armin Straub 13 / 38

  18. Moments of a two-step walk W 2 (2 k ) : abelian squares of length 2 k from 2 letters EG b a b a a a b a a b � 2 k � Hence W 2 (2 k ) = . k � 1 � With k = 1 1! Γ 2 (3 / 2) = 4 1 2 : = (1 / 2)! 2 = 1 / 2 π THM If f ( z ) is analytic for Re ( z ) � 0 , “nice”, and Carlson f (0) = 0 , f (1) = 0 , f (2) = 0 , . . . , then f ( z ) = 0 identically. | f ( z ) | � Ae α | z | , and • W n ( s ) is nice! � s � | f ( iy ) | � Be β | y | for β < π • Indeed, W 2 ( s ) = . s/ 2 Arithmetic aspects of short random walks Armin Straub 13 / 38

  19. Moments of a three-step walk � 1 k � � k � 2 � 2 j � � EG 2 , − k, − k � � W 3 (2 k ) = = 3 F 2 � 4 � j j 1 , 1 j =0 Arithmetic aspects of short random walks Armin Straub 14 / 38

  20. Moments of a three-step walk � 1 k � � k � 2 � 2 j � � EG 2 , − k, − k � � W 3 (2 k ) = = 3 F 2 � 4 � j j 1 , 1 j =0 � 1 � � 2 , − 1 2 , − 1 � 2 3 F 2 � 4 ≈ 1 . 574597238 − 0 . 126026522 i � 1 , 1 Arithmetic aspects of short random walks Armin Straub 14 / 38

  21. Moments of a three-step walk � 1 k � � k � 2 � 2 j � � EG 2 , − k, − k � � W 3 (2 k ) = = 3 F 2 � 4 � j j 1 , 1 j =0 � �� � =: V 3 (2 k ) � 1 � � 2 , − 1 2 , − 1 � 2 3 F 2 � 4 ≈ 1 . 574597238 − 0 . 126026522 i � 1 , 1 Re ( W 3 ( s ) − V 3 ( s )) 0.05 2 4 6 8 10 � 0.05 � 0.10 � 0.15 Arithmetic aspects of short random walks Armin Straub 14 / 38

  22. Moments of a three-step walk � 1 k � � k � 2 � 2 j � � EG 2 , − k, − k � � W 3 (2 k ) = = 3 F 2 � 4 � j j 1 , 1 j =0 � �� � =: V 3 (2 k ) � 1 � � 2 , − 1 2 , − 1 � 2 3 F 2 � 4 ≈ 1 . 574597238 − 0 . 126026522 i � 1 , 1 Re ( W 3 ( s ) − V 3 ( s )) 0.05 2 4 6 8 10 � 0.05 � 0.10 � 0.15 Arithmetic aspects of short random walks Armin Straub 14 / 38

  23. Moments of a three-step walk � 1 k � � k � 2 � 2 j � � EG 2 , − k, − k � � W 3 (2 k ) = = 3 F 2 � 4 � j j 1 , 1 j =0 � �� � =: V 3 (2 k ) � 1 � � 2 , − 1 2 , − 1 � 2 3 F 2 � 4 ≈ 1 . 574597238 − 0 . 126026522 i � 1 , 1 Re ( W 3 ( s ) − V 3 ( s )) 0.05 | V 3 ( − i ( s + 1)) / V 3 ( − is ) | : e π = 23 . 1407 . . . 23.0 2 4 6 8 10 22.8 � 0.05 22.6 � 0.10 22.4 � 0.15 20 40 60 80 100 120 140 Arithmetic aspects of short random walks Armin Straub 14 / 38

  24. Moments of a three-step walk � 1 k � � k � 2 � 2 j � � EG 2 , − k, − k � � W 3 (2 k ) = = 3 F 2 � 4 � j j 1 , 1 j =0 � �� � =: V 3 (2 k ) For integers k , THM Borwein- Nuyens- � 1 � � 2 , − k 2 , − k S-Wan, � 2 2010 W 3 ( k ) = Re 3 F 2 � 4 . � 1 , 1 Arithmetic aspects of short random walks Armin Straub 14 / 38

  25. Moments of a three-step walk � 1 k � � k � 2 � 2 j � � EG 2 , − k, − k � � W 3 (2 k ) = = 3 F 2 � 4 � j j 1 , 1 j =0 � �� � =: V 3 (2 k ) For integers k , THM Borwein- Nuyens- � 1 � � 2 , − k 2 , − k S-Wan, � 2 2010 W 3 ( k ) = Re 3 F 2 � 4 . � 1 , 1 � 1 � � 2 � COR 2 1 / 3 2 2 / 3 W 3 (1) = 3 + 27 π 4 Γ 6 π 4 Γ 6 16 3 4 3 = 1 . 57459723755189 . . . Arithmetic aspects of short random walks Armin Straub 14 / 38

  26. Moments of a four-step walk • Using Meijer G -function representations and transformations: � 5 � � THM 4 , 1 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 � W 4 ( − 1) = π Borwein- 2 � 4 7 F 6 � 1 S-Wan, � 1 4 , 1 , 1 , 1 , 1 , 1 2010 � 1 � 3 � � � � 2 , 1 2 , 1 2 , 1 2 , 1 2 , 1 2 , 3 2 , 3 2 , 3 2 , 3 2 , 3 = π + π � � 2 2 4 6 F 5 � 1 64 6 F 5 � 1 � � 1 , 1 , 1 , 1 , 1 2 , 2 , 2 , 2 , 2 � 2 n � 6 ∞ = π (4 n + 1) � n . 4 6 n 4 n =0 � 7 � � THM 4 , 3 2 , 3 2 , 3 2 , 1 2 , 1 2 , 1 W 4 (1) = 3 π � Borwein- 2 � 4 7 F 6 � 1 S-Wan, � 3 4 , 2 , 2 , 2 , 1 , 1 2010 � 7 � � 4 , 3 2 , 3 2 , 1 2 , 1 2 , 1 2 , 1 − 3 π � 2 � 8 7 F 6 � 1 . � 3 4 , 2 , 2 , 2 , 2 , 1 • We have no idea about the case of five steps. Arithmetic aspects of short random walks Armin Straub 15 / 38

  27. Complex moments � � 2 THM k � W n (2 k ) = a 1 , . . . , a n a 1 + ··· + a n = k • Inevitable recursions K · f ( k ) = f ( k + 1) ( k + 2) 2 K 2 − (10 k 2 + 30 k + 23) K + 9( k + 1) 2 � � · W 3 (2 k ) = 0 ( k + 2) 3 K 2 − (2 k + 3)(10 k 2 + 30 k + 24) K + 64( k + 1) 3 � � · W 4 (2 k ) = 0 Arithmetic aspects of short random walks Armin Straub 16 / 38

  28. Complex moments � � 2 THM k � W n (2 k ) = a 1 , . . . , a n a 1 + ··· + a n = k • Inevitable recursions K · f ( k ) = f ( k + 1) ( k + 2) 2 K 2 − (10 k 2 + 30 k + 23) K + 9( k + 1) 2 � � · W 3 (2 k ) = 0 ( k + 2) 3 K 2 − (2 k + 3)(10 k 2 + 30 k + 24) K + 64( k + 1) 3 � � · W 4 (2 k ) = 0 • Via Carlson’s Theorem these become functional equations Arithmetic aspects of short random walks Armin Straub 16 / 38

  29. Complex moments • Analytic continuations: 4 4 3 3 2 2 1 1 � 6 � 4 � 2 2 � 6 � 4 � 2 2 � 1 � 1 W 3 ( s ) W 4 ( s ) � 2 � 2 � 3 � 3 2 • W 3 ( s ) has a simple pole at − 2 with residue √ 3 π Arithmetic aspects of short random walks Armin Straub 17 / 38

  30. Complex moments • Analytic continuations: 4 4 3 3 2 2 1 1 � 6 � 4 � 2 2 � 6 � 4 � 2 2 � 1 � 1 W 3 ( s ) W 4 ( s ) � 2 � 2 � 3 � 3 2 • W 3 ( s ) has a simple pole at − 2 with residue √ 3 π � W 3 ( s ) has simple poles at − 2 k − 2 with residue 2 W 3 (2 k ) √ 3 2 k π 3 Arithmetic aspects of short random walks Armin Straub 17 / 38

  31. Complex moments • Analytic continuations: 4 4 3 3 2 2 1 1 � 6 � 4 � 2 2 � 6 � 4 � 2 2 � 1 � 1 W 3 ( s ) W 4 ( s ) � 2 � 2 � 3 � 3 2 • W 3 ( s ) has a simple pole at − 2 with residue √ 3 π � W 3 ( s ) has simple poles at �� W 4 ( s ) has double poles at − 2 k − 2 with residue − 2 k − 2 with lowest-order term 2 W 3 (2 k ) 3 W 4 (2 k ) √ 3 2 k 2 π 2 8 2 k π 3 Arithmetic aspects of short random walks Armin Straub 17 / 38

  32. W 4 ( s ) in the complex plane 4 3 2 1 � 6 � 4 � 2 2 � 1 � 2 � 3 Arithmetic aspects of short random walks Armin Straub 18 / 38

  33. W 4 ( s ) in the complex plane 4 3 2 1 � 6 � 4 � 2 2 � 1 � 2 � 3 Arithmetic aspects of short random walks Armin Straub 18 / 38

  34. Crashcourse on the Mellin transform • Mellin transform F ( s ) of f ( x ) : W n ( s − 1) = M [ p n ; s ] � ∞ x s f ( x )d x M [ f ; s ] = x 0 Arithmetic aspects of short random walks Armin Straub 19 / 38

  35. Crashcourse on the Mellin transform • Mellin transform F ( s ) of f ( x ) : W n ( s − 1) = M [ p n ; s ] � ∞ x s f ( x )d x M [ f ; s ] = x 0 • F ( s ) is analytic in a strip Thus functional equations • Functional properties: for F ( s ) translate into DEs • M [ x µ f ( x ); s ] = F ( s + µ ) for f ( x ) • M [ D x f ( x ); s ] = − ( s − 1) F ( s − 1) • M [ − θ x f ( x ); s ] = sF ( s ) Arithmetic aspects of short random walks Armin Straub 19 / 38

  36. Crashcourse on the Mellin transform • Mellin transform F ( s ) of f ( x ) : W n ( s − 1) = M [ p n ; s ] � ∞ x s f ( x )d x M [ f ; s ] = x 0 • F ( s ) is analytic in a strip Thus functional equations • Functional properties: for F ( s ) translate into DEs • M [ x µ f ( x ); s ] = F ( s + µ ) for f ( x ) • M [ D x f ( x ); s ] = − ( s − 1) F ( s − 1) • M [ − θ x f ( x ); s ] = sF ( s ) • Poles of F ( s ) left of strip = ⇒ asymptotics of f ( x ) at zero ( − 1) n 1 n ! x m (log x ) n ( s + m ) n +1 Arithmetic aspects of short random walks Armin Straub 19 / 38

  37. Mellin approach illustrated for p 2 0.8 0.6 0.4 � 2 k � • W 2 (2 k ) = 0.2 k 0.5 1.0 1.5 2.0 ( s + 2) W 2 ( s + 2) − 4( s + 1) W 2 ( s ) = 0 � x 2 ( θ x + 1) − 4 θ x � · p 2 ( x ) = 0 Arithmetic aspects of short random walks Armin Straub 20 / 38

  38. Mellin approach illustrated for p 2 0.8 0.6 0.4 � 2 k � • W 2 (2 k ) = 0.2 k 0.5 1.0 1.5 2.0 ( s + 2) W 2 ( s + 2) − 4( s + 1) W 2 ( s ) = 0 � x 2 ( θ x + 1) − 4 θ x � · p 2 ( x ) = 0 C • Hence: p 2 ( x ) = √ 4 − x 2 Arithmetic aspects of short random walks Armin Straub 20 / 38

  39. Mellin approach illustrated for p 2 0.8 0.6 0.4 � 2 k � • W 2 (2 k ) = 0.2 k 0.5 1.0 1.5 2.0 ( s + 2) W 2 ( s + 2) − 4( s + 1) W 2 ( s ) = 0 � x 2 ( θ x + 1) − 4 θ x � · p 2 ( x ) = 0 C • Hence: p 2 ( x ) = √ 4 − x 2 W 2 ( s ) = 1 1 s + 1 + O (1) as s → − 1 π p 2 ( x ) = 1 π + O ( x ) as x → 0 + 2 • Taken together: p 2 ( x ) = √ 4 − x 2 π Arithmetic aspects of short random walks Armin Straub 20 / 38

  40. p 4 and its differential equation 0.5 0.4 0.3 0.2 0.1 1 2 3 4 � ( s + 4) 3 S 4 − 4( s + 3)(5 s 2 + 30 s + 48) S 2 + 64( s + 2) 3 � · W 4 ( s ) = 0 translates into A 4 · p 4 ( x ) = 0 with A 4 = x 4 ( θ x + 1) 3 − 4 x 2 θ x (5 θ 2 x + 3) + 64( θ x − 1) 3 Arithmetic aspects of short random walks Armin Straub 21 / 38

  41. p 4 and its differential equation 0.5 0.4 0.3 0.2 0.1 1 2 3 4 � ( s + 4) 3 S 4 − 4( s + 3)(5 s 2 + 30 s + 48) S 2 + 64( s + 2) 3 � · W 4 ( s ) = 0 translates into A 4 · p 4 ( x ) = 0 with A 4 = x 4 ( θ x + 1) 3 − 4 x 2 θ x (5 θ 2 x + 3) + 64( θ x − 1) 3 p 4 ( x ) ≈ C √ 4 − x as x → 4 − . Thus p ′′ !! 4 is not locally integrable Care and does not have a Mellin transform in the classical sense. needed Arithmetic aspects of short random walks Armin Straub 21 / 38

  42. p 4 and its differential equation 0.5 0.4 0.3 0.2 0.1 1 2 3 4 � ( s + 4) 3 S 4 − 4( s + 3)(5 s 2 + 30 s + 48) S 2 + 64( s + 2) 3 � · W 4 ( s ) = 0 translates into A 4 · p 4 ( x ) = 0 with A 4 = x 4 ( θ x + 1) 3 − 4 x 2 θ x (5 θ 2 x + 3) + 64( θ x − 1) 3 x + 6 x 4 � x 2 − 10 � = ( x − 4)( x − 2) x 3 ( x + 2)( x + 4) D 3 D 2 x 7 x 4 − 32 x 2 + 64 x 2 − 8 x 2 + 8 � � � � � � + x D x + p 4 ( x ) ≈ C √ 4 − x as x → 4 − . Thus p ′′ !! 4 is not locally integrable Care and does not have a Mellin transform in the classical sense. needed Arithmetic aspects of short random walks Armin Straub 21 / 38

  43. Densities in general THM • The density p n satisfies a DE of order n − 1 . Borwein- S-Wan- • p n is real analytic except at 0 and the integers n, n − 2 , n − 4 , . . . . Zudilin, 2011 The second statement relies on an explicit recursion by Verrill (2004) as well as the combinatorial identity j j � � � � ( n − 2 m i ) 2 = α i ( n + 1 − α i ) . i =1 1 � α 1 ,...,αj � n i =1 0 � m 1 ,...,mj<n/ 2 mi<mi +1 αi � αi +1 − 2 First proven by Djakov-Mityagin (2004). Direct combinatorial proof by Zagier. Arithmetic aspects of short random walks Armin Straub 22 / 38

  44. Densities in general EG n/ 2 − 1 n � � ( n − 2 m ) 2 = α ( n + 1 − α ) m =0 α =1 The second statement relies on an explicit recursion by Verrill (2004) as well as the combinatorial identity j j � � � � ( n − 2 m i ) 2 = α i ( n + 1 − α i ) . i =1 1 � α 1 ,...,αj � n i =1 0 � m 1 ,...,mj<n/ 2 mi<mi +1 αi � αi +1 − 2 First proven by Djakov-Mityagin (2004). Direct combinatorial proof by Zagier. Arithmetic aspects of short random walks Armin Straub 22 / 38

  45. Densities in general EG n/ 2 − 1 n � � ( n − 2 m ) 2 = α ( n + 1 − α ) m =0 α =1 n/ 2 − 1 m 1 − 1 � � ( n − 2 m 1 ) 2 ( n − 2 m 2 ) 2 m 1 =0 m 2 =0 n α 1 − 2 � � = α 1 ( n + 1 − α 1 ) α 2 ( n + 1 − α 2 ) α 1 =1 α 2 =1 The second statement relies on an explicit recursion by Verrill (2004) as well as the combinatorial identity j j � � � � ( n − 2 m i ) 2 = α i ( n + 1 − α i ) . i =1 1 � α 1 ,...,αj � n i =1 0 � m 1 ,...,mj<n/ 2 mi<mi +1 αi � αi +1 − 2 First proven by Djakov-Mityagin (2004). Direct combinatorial proof by Zagier. Arithmetic aspects of short random walks Armin Straub 22 / 38

  46. p 4 and its asymptotics at zero 3 W 4 (2 k ) s 4 ,k = 2 π 2 8 2 k • W 4 ( s ) has double poles: s 4 ,k r 4 ,k W 4 ( s ) = ( s + 2 k + 2) 2 + s + 2 k + 2 + O (1) as s → − 2 k − 2 ∞ � ( r 4 ,k − s 4 ,k log( x )) x 2 k +1 p 4 ( x ) = for small x � 0 k =0 Arithmetic aspects of short random walks Armin Straub 23 / 38

  47. p 4 and its asymptotics at zero 3 W 4 (2 k ) s 4 ,k = 2 π 2 8 2 k • W 4 ( s ) has double poles: s 4 ,k r 4 ,k W 4 ( s ) = ( s + 2 k + 2) 2 + s + 2 k + 2 + O (1) as s → − 2 k − 2 ∞ � ( r 4 ,k − s 4 ,k log( x )) x 2 k +1 p 4 ( x ) = for small x � 0 k =0 k � 0 W 4 (2 k ) z k is the analytic solution of • y 0 ( z ) := � � 64 z 2 ( θ + 1) 3 − 2 z (2 θ + 1)(5 θ 2 + 5 θ + 2) + θ 3 � · y ( z ) = 0 . (DE) Arithmetic aspects of short random walks Armin Straub 23 / 38

  48. p 4 and its asymptotics at zero 3 W 4 (2 k ) s 4 ,k = 2 π 2 8 2 k • W 4 ( s ) has double poles: s 4 ,k r 4 ,k W 4 ( s ) = ( s + 2 k + 2) 2 + s + 2 k + 2 + O (1) as s → − 2 k − 2 ∞ � ( r 4 ,k − s 4 ,k log( x )) x 2 k +1 p 4 ( x ) = for small x � 0 k =0 k � 0 W 4 (2 k ) z k is the analytic solution of • y 0 ( z ) := � � 64 z 2 ( θ + 1) 3 − 2 z (2 θ + 1)(5 θ 2 + 5 θ + 2) + θ 3 � · y ( z ) = 0 . (DE) • Let y 1 ( z ) solve (DE) and y 1 ( z ) − y 0 ( z ) log( z ) ∈ z Q [[ z ]] . Then p 4 ( x ) = − 3 x 4 π 2 y 1 ( x 2 / 64) . Arithmetic aspects of short random walks Armin Straub 23 / 38

  49. Hypergeometric forms 0.5 0.4 0.3 Generating function for Domb numbers: 0.2 THM 0.1 Chan- Chan-Liu 1 2 3 4 � 1 ∞ � � 3 , 1 2 , 2 108 z 2 2004; 1 � W 4 (2 k ) z k = � 3 Rogers 1 − 4 z 3 F 2 � 2009 (1 − 4 z ) 3 1 , 1 � k =0 Arithmetic aspects of short random walks Armin Straub 24 / 38

  50. Hypergeometric forms 0.5 0.4 0.3 Generating function for Domb numbers: 0.2 THM 0.1 Chan- Chan-Liu 1 2 3 4 � 1 ∞ � � 3 , 1 2 , 2 108 z 2 2004; 1 � W 4 (2 k ) z k = � 3 Rogers 1 − 4 z 3 F 2 � 2009 (1 − 4 z ) 3 1 , 1 � k =0 � 1 � � 3 , 1 2 , 2 � • Basis at ∞ for the hypergeometric equation of 3 F 2 � t : 3 1 , 1 [as x → 4 then z = x 2 108 z 2 64 → 1 4 and t = (1 − 4 z ) 3 → ∞ ] � � � � � � � � � 3 , 1 1 3 , 1 1 2 , 1 2 , 1 3 , 2 2 3 , 2 � � � t − 1 / 33 F 2 1 t − 1 / 23 F 2 1 t − 2 / 33 F 2 1 3 , 2 , 3 � � � 2 3 , 5 6 , 7 5 3 , 7 4 t t t � � � 6 6 6 Arithmetic aspects of short random walks Armin Straub 24 / 38

  51. Hypergeometric forms 0.5 0.4 0.3 Generating function for Domb numbers: 0.2 THM 0.1 Chan- Chan-Liu 1 2 3 4 � 1 ∞ � � 3 , 1 2 , 2 108 z 2 2004; 1 � W 4 (2 k ) z k = � 3 Rogers 1 − 4 z 3 F 2 � 2009 (1 − 4 z ) 3 1 , 1 � k =0 � 1 � � 3 , 1 2 , 2 � • Basis at ∞ for the hypergeometric equation of 3 F 2 � t : 3 1 , 1 [as x → 4 then z = x 2 108 z 2 64 → 1 4 and t = (1 − 4 z ) 3 → ∞ ] � � � � � � � � � 3 , 1 1 3 , 1 1 2 , 1 2 , 1 3 , 2 2 3 , 2 � � � t − 1 / 33 F 2 1 t − 1 / 23 F 2 1 t − 2 / 33 F 2 1 3 , 2 , 3 � � � 2 3 , 5 6 , 7 5 3 , 7 4 t t t � � � 6 6 6 For 2 � x � 4 , THM Borwein- √ S-Wan- � � � � 16 − x 2 � 3 1 2 , 1 2 , 1 16 − x 2 � Zudilin 2 2 � 2011 p 4 ( x ) = 3 F 2 . � 6 , 7 5 π 2 x 108 x 4 � 6 Arithmetic aspects of short random walks Armin Straub 24 / 38

  52. Hypergeometric forms 0.5 0.4 0.3 Generating function for Domb numbers: 0.2 THM 0.1 Chan- Chan-Liu 1 2 3 4 � 1 ∞ � � 3 , 1 2 , 2 108 z 2 2004; 1 � W 4 (2 k ) z k = � 3 Rogers 1 − 4 z 3 F 2 � 2009 (1 − 4 z ) 3 1 , 1 � k =0 � 1 � � 3 , 1 2 , 2 � • Basis at ∞ for the hypergeometric equation of 3 F 2 � t : 3 1 , 1 [as x → 4 then z = x 2 108 z 2 64 → 1 4 and t = (1 − 4 z ) 3 → ∞ ] � � � � � � � � � 3 , 1 1 3 , 1 1 2 , 1 2 , 1 3 , 2 2 3 , 2 � � � t − 1 / 33 F 2 1 t − 1 / 23 F 2 1 t − 2 / 33 F 2 1 3 , 2 , 3 � � � 3 , 5 2 6 , 7 5 4 3 , 7 t t t � � � 6 6 6 For ✭✭✭✭ 2 � x � 4 0 � x � 4 , THM ✭ Borwein- √ S-Wan- � � � � 16 − x 2 � 3 1 2 , 1 2 , 1 16 − x 2 � Zudilin p 4 ( x ) = Re 2 2 � 2011 3 F 2 . � 6 , 7 5 π 2 x 108 x 4 � 6 Arithmetic aspects of short random walks Armin Straub 24 / 38

  53. The density of a five-step random walk, again p 5 ( x ) = 0 . 32993 x +0 . 0066167 x 3 +0 . 00026233 x 5 +0 . 000014119 x 7 + O ( x 9 ) � ∞ 0.35 xtJ 0 ( xt ) J 5 p 5 ( x ) = 0 ( t ) d t 0.30 0 0.25 0.20 0.15 0.10 0.05 1 2 3 4 5 “ . . . the graphical construction, however carefully reinvestigated, did not permit of our considering the curve to be anything but a straight line. . . Even if it is not absolutely true, it exemplifies the extraordinary power of such integrals of J products to give extremely close approximations to ” such simple forms as horizontal lines. Karl Pearson , 1906 Arithmetic aspects of short random walks Armin Straub 25 / 38

  54. The density of a five-step random walk, again x +0 . 0066167 x 3 +0 . 00026233 x 5 +0 . 000014119 x 7 + O ( x 9 ) p 5 ( x ) = 0 . 32993 = p 4 (1) � ∞ 0.35 xtJ 0 ( xt ) J 5 p 5 ( x ) = 0 ( t ) d t 0.30 0 0.25 0.20 0.15 0.10 0.05 1 2 3 4 5 “ . . . the graphical construction, however carefully reinvestigated, did not permit of our considering the curve to be anything but a straight line. . . Even if it is not absolutely true, it exemplifies the extraordinary power of such integrals of J products to give extremely close approximations to ” such simple forms as horizontal lines. Karl Pearson , 1906 Arithmetic aspects of short random walks Armin Straub 25 / 38

  55. Modular differential equations THM Let f ( τ ) be a modular form and x ( τ ) a modular function w.r.t. Γ . • Then y ( x ) defined by f ( τ ) = y ( x ( τ )) satisfies a linear DE. • If x ( τ ) is a Hauptmodul for Γ , then the DE has polynomial coefficients. • The solutions of the DE are y ( x ) , τy ( x ) , τ 2 y ( x ) , . . . . Arithmetic aspects of short random walks Armin Straub 26 / 38

  56. Modular differential equations THM Let f ( τ ) be a modular form and x ( τ ) a modular function w.r.t. Γ . • Then y ( x ) defined by f ( τ ) = y ( x ( τ )) satisfies a linear DE. • If x ( τ ) is a Hauptmodul for Γ , then the DE has polynomial coefficients. • The solutions of the DE are y ( x ) , τy ( x ) , τ 2 y ( x ) , . . . . � 1 / 2 , 1 / 2 � � EG � = θ 3 ( τ ) 2 2 F 1 � λ ( τ ) Classic � 1 • λ ( τ ) = 16 η ( τ/ 2) 8 η (2 τ ) 16 is the elliptic lambda function, a η ( τ ) 24 Hauptmodul for Γ(2) . η ( τ ) 5 • θ 3 ( τ ) = η ( τ/ 2) 2 η (2 τ ) 2 is the usual Jacobi theta function. Arithmetic aspects of short random walks Armin Straub 26 / 38

  57. Modular differential equations THM Let f ( τ ) be a modular form and x ( τ ) a modular function w.r.t. Γ . • Then y ( x ) defined by f ( τ ) = y ( x ( τ )) satisfies a linear DE. • If x ( τ ) is a Hauptmodul for Γ , then the DE has polynomial coefficients. • The solutions of the DE are y ( x ) , τy ( x ) , τ 2 y ( x ) , . . . . � η (2 τ ) η (6 τ ) � 6 EG f ( τ ) = ( η ( τ ) η (3 τ )) 4 Chan- x ( τ ) = − , Chan-Liu η ( τ ) η (3 τ ) ( η (2 τ ) η (6 τ )) 2 2004 = − q − 6 q 2 − 21 q 3 − 68 q 4 + . . . = 1 − 4 q + 4 q 2 − 4 q 3 + 20 q 4 + . . . � �� � 3 − 2 1 Here, Γ = Γ 0 (6) , . √ 6 − 3 3 Arithmetic aspects of short random walks Armin Straub 26 / 38

  58. Modular differential equations THM Let f ( τ ) be a modular form and x ( τ ) a modular function w.r.t. Γ . • Then y ( x ) defined by f ( τ ) = y ( x ( τ )) satisfies a linear DE. • If x ( τ ) is a Hauptmodul for Γ , then the DE has polynomial coefficients. • The solutions of the DE are y ( x ) , τy ( x ) , τ 2 y ( x ) , . . . . � η (2 τ ) η (6 τ ) � 6 EG f ( τ ) = ( η ( τ ) η (3 τ )) 4 Chan- x ( τ ) = − , Chan-Liu η ( τ ) η (3 τ ) ( η (2 τ ) η (6 τ )) 2 2004 = − q − 6 q 2 − 21 q 3 − 68 q 4 + . . . = 1 − 4 q + 4 q 2 − 4 q 3 + 20 q 4 + . . . � �� � 3 − 2 1 Here, Γ = Γ 0 (6) , . Then, in a neighborhood of i ∞ , √ 6 − 3 3 � W 4 (2 k ) x ( τ ) k . f ( τ ) = y 0 ( x ( τ )) = k � 0 Arithmetic aspects of short random walks Armin Straub 26 / 38

  59. Modular parametrization of p 4 THM For τ = − 1 / 2 + iy and y > 0 : Borwein- S-Wan- � � η (2 τ ) η (6 τ ) � 3 � Zudilin = 6(2 τ + 1) 2011 p 4 8 i η ( τ ) η (2 τ ) η (3 τ ) η (6 τ ) η ( τ ) η (3 τ ) π = √ = √ − x ( τ ) f ( τ ) 64 x ( τ ) Arithmetic aspects of short random walks Armin Straub 27 / 38

  60. Modular parametrization of p 4 THM For τ = − 1 / 2 + iy and y > 0 : Borwein- S-Wan- � � η (2 τ ) η (6 τ ) � 3 � Zudilin = 6(2 τ + 1) 2011 p 4 8 i η ( τ ) η (2 τ ) η (3 τ ) η (6 τ ) η ( τ ) η (3 τ ) π = √ = √ − x ( τ ) f ( τ ) 64 x ( τ ) √− 15 , one obtains p 4 (1) = p ′ • When τ = − 1 2 + 1 5 (0) as an η -product. 6 Arithmetic aspects of short random walks Armin Straub 27 / 38

  61. Modular parametrization of p 4 THM For τ = − 1 / 2 + iy and y > 0 : Borwein- S-Wan- � � η (2 τ ) η (6 τ ) � 3 � Zudilin = 6(2 τ + 1) 2011 p 4 8 i η ( τ ) η (2 τ ) η (3 τ ) η (6 τ ) η ( τ ) η (3 τ ) π = √ = √ − x ( τ ) f ( τ ) 64 x ( τ ) √− 15 , one obtains p 4 (1) = p ′ • When τ = − 1 2 + 1 5 (0) as an η -product. 6 • Applying the Chowla–Selberg formula, eventually leads to: √ COR 5 p 4 (1) = p ′ 40 π 4 Γ( 1 15 )Γ( 2 15 )Γ( 4 15 )Γ( 8 5 (0) = 15 ) ≈ 0 . 32993 Arithmetic aspects of short random walks Armin Straub 27 / 38

  62. Modular parametrization of p 4 THM For τ = − 1 / 2 + iy and y > 0 : Borwein- S-Wan- � � η (2 τ ) η (6 τ ) � 3 � Zudilin = 6(2 τ + 1) 2011 p 4 8 i η ( τ ) η (2 τ ) η (3 τ ) η (6 τ ) η ( τ ) η (3 τ ) π = √ = √ − x ( τ ) f ( τ ) 64 x ( τ ) √− 15 , one obtains p 4 (1) = p ′ • When τ = − 1 2 + 1 5 (0) as an η -product. 6 • Applying the Chowla–Selberg formula, eventually leads to: √ COR 5 p 4 (1) = p ′ 40 π 4 Γ( 1 15 )Γ( 2 15 )Γ( 4 15 )Γ( 8 5 (0) = 15 ) ≈ 0 . 32993 √ Fact If σ 1 , σ 2 ∈ H both belong to Q ( − d ) , then the quotient η ( σ 1 ) /η ( σ 2 ) is an algebraic number. Arithmetic aspects of short random walks Armin Straub 27 / 38

  63. Chowla–Selberg formula THM � | d | h k ) � 3 w � ( d 1 � � � Chowla– j | η ( τ j ) | 24 = a − 6 k Γ Selberg (2 π | d | ) 6 h | d | 1967 j =1 k =1 where the product is over reduced binary quadratic forms √ − b j + d [ a j , b j , c j ] of discriminant d < 0 . τ j = 2 a j Arithmetic aspects of short random walks Armin Straub 28 / 38

  64. Chowla–Selberg formula THM � | d | h k ) � 3 w � ( d 1 � � � Chowla– j | η ( τ j ) | 24 = a − 6 k Γ Selberg (2 π | d | ) 6 h | d | 1967 j =1 k =1 where the product is over reduced binary quadratic forms √ − b j + d [ a j , b j , c j ] of discriminant d < 0 . τ j = 2 a j Q ( √− 15) has discriminant d = − 15 and class number h = 2 . EG Q 1 = [1 , 1 , 4] Q 2 = [2 , 1 , 2] √− 15 , τ 1 = − 1 2 + 1 τ 2 = 1 2 τ 1 2 � � 1 / 2 Γ( 1 15 )Γ( 2 15 )Γ( 4 15 )Γ( 8 15 ) 1 1 2 | η ( τ 1 ) η ( τ 2 ) | 2 = √ Γ( 7 15 )Γ( 11 15 )Γ( 13 15 )Γ( 14 30 π 15 ) 1 120 π 3 Γ( 1 15 )Γ( 2 15 )Γ( 4 15 )Γ( 8 = 15 ) Arithmetic aspects of short random walks Armin Straub 28 / 38

  65. Evaluating eta-quotients √ Fact If σ 1 , σ 2 ∈ H both belong to Q ( − d ) , then the quotient η ( σ 1 ) /η ( σ 2 ) is an algebraic number. Arithmetic aspects of short random walks Armin Straub 29 / 38

  66. Evaluating eta-quotients √ Fact If σ 1 , σ 2 ∈ H both belong to Q ( − d ) , then the quotient η ( σ 1 ) /η ( σ 2 ) is an algebraic number. • We can write σ 2 = M · σ 1 for some M ∈ GL 2 ( Z ) . Proof. η ( τ ) • f ( τ ) = η ( M · τ ) is a modular function. Arithmetic aspects of short random walks Armin Straub 29 / 38

  67. Evaluating eta-quotients √ Fact If σ 1 , σ 2 ∈ H both belong to Q ( − d ) , then the quotient η ( σ 1 ) /η ( σ 2 ) is an algebraic number. • We can write σ 2 = M · σ 1 for some M ∈ GL 2 ( Z ) . Proof. η ( τ ) • f ( τ ) = η ( M · τ ) is a modular function. • σ 1 = N · σ 1 for some non-identity N ∈ GL 2 ( Z ) . • f ( N · τ ) is another modular function. Arithmetic aspects of short random walks Armin Straub 29 / 38

  68. Evaluating eta-quotients √ Fact If σ 1 , σ 2 ∈ H both belong to Q ( − d ) , then the quotient η ( σ 1 ) /η ( σ 2 ) is an algebraic number. • We can write σ 2 = M · σ 1 for some M ∈ GL 2 ( Z ) . Proof. η ( τ ) • f ( τ ) = η ( M · τ ) is a modular function. • σ 1 = N · σ 1 for some non-identity N ∈ GL 2 ( Z ) . • f ( N · τ ) is another modular function. • There is an algebraic relation Φ( f ( τ ) , f ( N · τ )) = 0 . Arithmetic aspects of short random walks Armin Straub 29 / 38

  69. Evaluating eta-quotients √ Fact If σ 1 , σ 2 ∈ H both belong to Q ( − d ) , then the quotient η ( σ 1 ) /η ( σ 2 ) is an algebraic number. • We can write σ 2 = M · σ 1 for some M ∈ GL 2 ( Z ) . Proof. η ( τ ) • f ( τ ) = η ( M · τ ) is a modular function. • σ 1 = N · σ 1 for some non-identity N ∈ GL 2 ( Z ) . • f ( N · τ ) is another modular function. • There is an algebraic relation Φ( f ( τ ) , f ( N · τ )) = 0 . • Then: Φ( f ( σ 1 ) , f ( σ 1 )) = 0 Arithmetic aspects of short random walks Armin Straub 29 / 38

  70. What we know about p 5 0.35 0.30 0.25 0.20 0.15 • W 5 ( s ) has simple poles at − 2 k − 2 with residue r 5 ,k 0.10 0.05 • Hence: p 5 ( x ) = � ∞ 1 2 3 4 5 k =0 r 5 ,k x 2 k +1 Surprising bonus of the modularity of p 4 : THM Borwein- √ S-Wan- Γ( 1 15 )Γ( 2 15 )Γ( 4 15 )Γ( 8 15 ) Zudilin, 5 2011 r 5 , 0 = p 4 (1) = π 4 40 = 13 2 1 ? r 5 , 1 225 r 5 , 0 − 5 π 4 r 5 , 0 • Other residues given recursively • p 5 solves the DE � x 6 ( θ + 1) 4 − x 4 (35 θ 4 + 42 θ 2 + 3) + x 2 (259( θ − 1) 4 + 104( θ − 1) 2 ) − (15( θ − 3)( θ − 1)) 2 � · p 5 ( x ) = 0 Arithmetic aspects of short random walks Armin Straub 30 / 38

  71. Hypergeometric formulae summarized 0.5 0.7 0.8 0.4 0.6 0.6 0.5 0.3 0.4 0.4 0.3 0.2 p 2 ( x ) p 3 ( x ) p 4 ( x ) 0.2 0.2 0.1 0.1 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 2.5 3.0 1 2 3 4 2 √ p 2 ( x ) = easy 4 − x 2 π √ � � � x 2 � 9 − x 2 � 2 1 3 , 2 � p 3 ( x ) = 2 3 x 3 � (3 + x 2 ) 2 F 1 classical � (3 + x 2 ) 3 π 1 with a spin � √ � 1 � � � 16 − x 2 � 3 2 , 1 2 , 1 16 − x 2 � p 4 ( x ) = 2 2 � Re 3 F 2 new � π 2 5 6 , 7 108 x 4 x BSWZ � 6 Arithmetic aspects of short random walks Armin Straub 31 / 38

  72. Mahler measure and random walks (Logarithmic) Mahler measure of p ( x 1 , . . . , x n ) : DEF � 1 � 1 � � e 2 πit 1 , . . . , e 2 πit n �� � d t 1 d t 2 . . . d t n µ ( p ) := · · · log � p 0 0 Arithmetic aspects of short random walks Armin Straub 32 / 38

  73. Mahler measure and random walks (Logarithmic) Mahler measure of p ( x 1 , . . . , x n ) : DEF � 1 � 1 � � e 2 πit 1 , . . . , e 2 πit n �� � d t 1 d t 2 . . . d t n µ ( p ) := · · · log � p 0 0 � � s d t � e 2 πit 1 + . . . + e 2 πit n � � • W n ( s ) = [0 , 1] n EG W ′ n (0) = µ ( x 1 + . . . + x n ) = µ (1 + x 1 + . . . + x n − 1 ) Arithmetic aspects of short random walks Armin Straub 32 / 38

  74. Mahler measure and random walks (Logarithmic) Mahler measure of p ( x 1 , . . . , x n ) : DEF � 1 � 1 � � e 2 πit 1 , . . . , e 2 πit n �� � d t 1 d t 2 . . . d t n µ ( p ) := · · · log � p 0 0 � � s d t � � e 2 πit 1 + . . . + e 2 πit n � • W n ( s ) = [0 , 1] n EG W ′ n (0) = µ ( x 1 + . . . + x n ) = µ (1 + x 1 + . . . + x n − 1 ) √ EG µ (1 + x + y ) = 3 3 = W ′ Smyth, 4 π L ( χ − 3 , 2) 3 (0) 1981 µ (1 + x + y + z ) = 7 ζ (3) = W ′ 4 (0) π 2 2 1 1 1 1 L ( χ − 3 , s ) = 1 − 2 s + 4 s − 5 s + 7 s − . . . Arithmetic aspects of short random walks Armin Straub 32 / 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend