are ge based skutterudites promising thermoelectrica
play

Are Ge-based skutterudites promising thermoelectrica? Ground state - PowerPoint PPT Presentation

ARW Workshop Properties and Applications of Thermoelectric Materials September 20 - 26, 2008 Hvar, Croatia Are Ge-based skutterudites promising thermoelectrica? Ground state properties, electronic and thermal transport E. Bauer Institute of


  1. ARW Workshop Properties and Applications of Thermoelectric Materials September 20 - 26, 2008 Hvar, Croatia Are Ge-based skutterudites promising thermoelectrica? Ground state properties, electronic and thermal transport E. Bauer Institute of Solid State Physics A - 1040 Wien, Austria 24. September 2008

  2. ARW Workshop Properties and Applications of Thermoelectric Materials September 20 - 26, 2008 Hvar, Croatia Are Ge-based skutterudites promising thermoelectrica? Ground state properties, electronic and thermal transport E. Bauer Institute of Solid State Physics A - 1040 Wien, Austria 24. September 2008

  3. in co-operation with:

  4. in co-operation with: G. Hilscher, H. Kaldarar, H. Michor, E. Royanian; T.U. Vienna, Austria A. Grytsiv, Xing-Qiu Chen, N. Melnychenko-Koblyuk, M. Rotter, R. Podloucky & P. Rogl Uni. Vienna, Austria Work supported by the Austrian FWF, P19165 and by the EU Complex metallic alloys, CMA

  5. Contents • Formation and general properties of skutterudites • Novel skutterudites { Ba , Sr , Eu , Th , U } Pt 4 Ge 12 • Normal state and superconducting properties • Thermoelectric properties of Ge-based skutterudites • Summary and Outlook More details: Phys. Rev. Lett. 99 , 217001, (2007); Adv. Mat. 20 , 1325 (2008) J. Phys. Soc. Jpn., 77 121, (2008); Phys. Rev. B (2008), in press.

  6. Filled skutterudites

  7. Filled skutterudites • structure type: LaFe 4 P 12 c ( CoAs 3 -structure). • lattice parameter: a = 9 . 127 ˚ el.positive A ( PrFe 4 Sb 12 ) element z • a strongly dependent on (e.g. Pr, Nd ) y x pnictogen atom (change as Sb, (P,As) large as 15 % ) • RE ion sixfold co-ordinated d-element (Fe, Co, Rh ...) by X. b • extremely large atomic dis- a placement parameter of fil- ler elements; increases with 2 a -site : Ep increasing cage volume; in- 8 c -site : transition metal creases with decreasing io- 24 g -site : P, As, Sb, Ge nic size.

  8. Formation of skutterudites EpT 4 X 12 4 12 transitional element in the 8c site p-element in the 24g site electopositive element in the 2a site until recently: No skutterudites entirely formed by Pt (Pd) and Ge

  9. Ba-Pt-Ge phase diagram • a = 0 . 87 nm ; lat- tice parameter much smaller than for X = P, As, Sb; • BaPt 4 Ge 12 exhibit the strongest de- viation from Zintl count (6 uncompen- sated electrons per formula) among all known skutterudites! • only example having ~Ba 8 Pt 4 Ge 42 BaPt 4 Ge 12 ~Ba 8 Pt 4 Ge BaPt 4 Ge 42 12 simultaneously cla- thrate and skutteru- dite members.

  10. Structural and electronic properties of EpPt4Ge 12

  11. X-ray diffraction in BaPt4Ge 12 110000 I obs BaPt Ge Im-3; R F = 0.017; a = 0.86889(1) nm 2 4 12 I calc 90000 I I obs calc - Bragg_position Ba Ge 70000 Pt Intensity [counts] 50000 30000 10000 -10000 -30000 8 18 28 38 48 58 68 78 88 98 2 � [ ] • known members: Ep . . . Sr, Ba; La, Ce, Pr, Nd, Eu; Th, U; • a = 0 . 87 nm; much smaller than for X = P, As, Sb;

  12. Is there a rattling mode in EpPt4Ge 12 ? • reduced lattice parameter prohibits “rattling” (at least) in BaPt 4 Sb 12 . • however: atomic displacement parameter of Eu in EuPt 4 Ge 12 twice as large as of Ba in BaPt 4 Ge 12

  13. Oftedal relation in EpPt4Ge 12 • in general for pnictogen: position parameter y + z ≈ 0 . 5 • largest deviation from Oftedal relation in EpPt 4 Ge 12

  14. Stability and Bonding in BaPt 4 Ge 12 Thermodynamical stability of XPt 4 Ge 12 (X=Ba,Sr) by density functional theory (DFT) using the Vienna ab initio simulation package (VASP) • total energy for hypothetical Pt 4 Ge 12 . • bonding energy E X for guest atom X from relation E X = U DF T XPt 4 Ge 12 − U DF T Pt 4 Ge 12 − U DF T X U DF T . . . total energy of compound or elemental solid. • E Ba = -3.24 eV and E Sr = -3.38 eV ⇒ stabilizing effect of the Ba and Sr guest atoms. • binary Pt 4 Ge 12 not stable; different to “ordinary” skutterudites

  15. Electronic density of states of { Sr , Ba } Pt 4 Ge 12 • DOS at E F do- minated by Ge- p states; small Pt- d contributions; vanishing Ba,Sr states • small differences between relativi- stic (s-o coup- ling) and non- relativistic calcu- lations.; • significant el-ph enhancement ⇒ SC!?

  16. Electron density in BaPt 4 Ge 12 Isosurfaces of the electron density (0.14 electrons per ˚ A 3 ) for the states of the DOS peak at Fermi energy; view along [1,1,1] • spherical shapes around Pt atoms representing metal-like • tubes connecting Ge atoms states formed by the Pt 5d-like visualizing strongly directed states. bonds;

  17. Superconductivity in EpPt4Ge 12

  18. Electrical resistivity of { Sr , Ba } Pt 4 Ge 12 100 0 T 0 T 100 0.5 T 0.1 T (a) 1 T 0.5 T 80 1.5 T 1 T BaPt 4 Ge 12 SrPt 4 Ge 12 80 2 T 1.25 T 1.5 T 50 60 ρ [ μΩ cm] 30 2 T ρ [ μΩ cm] 60 40 ρ [ μΩ cm] ρ [ μΩ cm] 30 20 40 40 20 2.25 T 2.5 T 10 10 20 2.75 T 20 0 T [K] 3 T T [K] 0 3.25 T (b) 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 0 0 50 100 150 200 250 300 50 100 150 200 250 300 T [K] T [K] • Woodward & Cody: ρ = ρ 0 + ρ 1 T + ρ 2 exp( − T 0 /T ) ; T 0 ≈ 130 K • T c = 5 . 1 and 5.35 K for Sr and Ba-based compounds

  19. Specific heat of BaPt 4 Ge 12 • γ ≈ 42 mJ/molK 2 θ D ≈ 245 K • ∆ C p /T ( T = T c ) ≈ 58 mJ/molK 2 ⇒ ∆ C p / ( γ n T c ) ≈ 1 . 35 , BCS theory: ∆ C p / ( γT c ) ≈ 1 . 43 .

  20. Specific heat of { Sr , Ba , Ca } Pt 4 Ge 12 Δ (0) = 9.7(1) K Ba 0.8 Ca 0.2 Pt 4 Ge 12 0.20 Δ (0) = 9.4(1) K 0 T Δ (0) = 8.8(1) K 1 3 T Ba 0.8 Ca 0.2 Pt 4 Ge 12 Cp/T [J/(mol K 2 )] 0.15 BaPt 4 Ge 12 Ces/ γ Tc SrPt 4 Ge 12 SrPt 4 Ge 12 0 T 0.10 3 T BaPt 4 Ge 12 0.1 0.05 0 T 3 T (b) (a) 0.00 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 1 2 3 4 5 6 7 T [K] Tc/T • T c = 5 . 1 and 5.35 K for Sr and Ba-based compounds • γ (Ba) ≈ 42 mJ/molK 2 γ (Sr) ≈ 41 mJ/molK 2 • θ D (BaPt 4 Ge 12 ) ≈ 245 K; θ D (SrPt 4 Ge 12 ) ≈ 220 K!!!

  21. SC features of { Ba , Sr } Pt 4 Ge 12 • Electron - phonon enhancement factor λ ≈ 0 . 7 ⇒ SC beyond weak coupling limit • smaller mass of Sr-compound does not produce larger Debye temperature; smaller atomic volume of Sr responsible for weaker bonding in cage; less oscillator strength; larger thermal displacement, smaller T c • mostly Ge- p states at the Fermi energy! SC due to Ge-electrons • comparable cage-forming compounds like { Ba , Sr } 8 Si 46 : states at E F predominantly formed from Ba- 5 d and Sr-4d states T c (Ba 8 Si 46 ) ≈ 8 K.

  22. Lattice contribution to { Ba , Sr } Pt 4 Ge 12 � ∞ ( ω 2 T ) 2 C ph ( T ) = R F ( ω ) sinh 2 ( ω 2 T ) 0 0.25 BaCa 0.2 Pt 4 Ge 12 (4/5)R π 4 ω −2 F( ω ) [mJ/(g-atomK 4 )] SrPt 4 Ge 12 6 0.20 least squares (C p - γ T )/ T 3 [mJ/g-atomK 4 ] fit • low lying pho- BaPt 4 Ge 12 non mode 0.15 4 responsible for superconducti- 0.10 Sr vity? Ba 2 Ca 0.05 ( Junod et al., 83) 0.00 0 2 5 10 20 50 100 200 T [K] ( ω /4.93) [K]

  23. Upper critical field of { Sr , Ba } Pt 4 Ge 12 2.0 BaPt 4 Ge 12 magnetisation resistivity specific heat 1.5 • Hake et al: μ 0 H c2 [T] H ′ c2 ∝ 1 / v F 1.0 • free electrons -0.53 T/K v F = ( N / V ) ( 1 / 3 ) -0.46 T/K SrPt 4 Ge 12 0.5 magnetisation resistivity • volume -0.31 T/K specific heat -0.275 T/K increases 0.0 0 1 2 3 4 5 6 from Sr to Tc [K] Ba ⇒ v F • BaPt 4 Ge 12 : decreases ! µ 0 H c 2 ≈ 1 . 8 T; µ 0 H ′ c 2 = − 0 . 46 T/K • SrPt 4 Ge 12 : µ 0 H c 2 ≈ 1 . 0 T; µ 0 H ′ c 2 = − 0 . 27 T/K

  24. Upper critical field of { Sr , Ba } Pt 4 Ge 12 2.0 BaPt 4 Ge 12 magnetisation resistivity specific heat 1.5 Maki parame- μ 0 H c2 [T] ter: 1.0 • BaPt 4 Ge 12 : -0.53 T/K α ≈ 0 . 18 -0.46 T/K SrPt 4 Ge 12 • SrPt 4 Ge 12 : 0.5 magnetisation α ≈ 0 . 14 resistivity -0.31 T/K specific heat -0.275 T/K 0.0 0 1 2 3 4 5 6 Tc [K] • WHH model applicable; • Contribution of α compensated by λ so !

  25. Pressure response of T c of SrPt 4 Ge 12 1.0 bar SrPt 4 Ge 12 100 3.5 kbar 8.6 kbar 13.5 kbar 14 DOS(E=E F ) [states/(ev . f.u.)] 17.5 kbar 80 19.2 kbar 12 20.5 kbar ρ [ μΩ cm] 10 60 5.4 SrPt 4 Ge 12 8 Tc [K] 40 6 5.2 4 20 SrPt 4 Ge 12 2 5.0 0 5 10 15 20 0 Pressure [kbar] 0 0 5 10 15 20 0 50 100 150 200 250 300 p [kbar] T [K] • Bogolyobov et al.: • θ D = 220 K; pressure inde- pendent; normal state region: � 1 � T c = 1 . 14¯ hω D exp − , model of Woodward & Cody λ − µ ∗ T 0 = 123 K • non-monotonous variation of λ = N ( E F ) V T c ( p )

  26. Ground state of { Th , U } Pt 4 Ge 12 200 5 UPt 4 Ge 12 ThPt 4 Ge 12 0.25 H c2 ' = -0.064 T/K 4 0.30 ThPt 4 Ge 12 150 H c2 (0, theor.) = 0.21 T γ = 35 mJ/mol K 2 α = 0.017 0.20 0.25 λ so = 15 3 ρ [ μΩ cm] ρ [ μΩ cm] Cp/ T [J/(mol K 2 )] 0 T 0.20 100 0.15 0.05 T μ 0 H [T] 0.1 T 2 0.2 T ThPt 4 Ge 12 0.15 μ 0 H c2 0.10 WHH 50 model 0.10 1 μ 0 H c 0.05 0.05 (a) (b) 0 (b) (a) 0 0.00 0.00 0 50 100 150 200 250 0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 0 1 2 3 4 5 T [K] T [K] T [K] T [K] • γ = 35 mJ/molK 2 ; θ D = • ThPt 4 Ge 12 ; T > T c : model of Woodard & Cody T 0 = 12 1 K; 260 K T c = 4 . 8 K • λ e − ph = 0 . 66 • UPt 4 Ge 12 ; spin fluctuations; • µ 0 H ′ c 2 = − 0 . 064 T/K ρ ( T ) = ρ 0 + AT n T ≪ : with ρ 0 = 14 . 5 µ Ω cm, A = 0 . 42 µ Ω cm/K 1 . 5 ; n = 1 . 5 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend