approximation schemes for machine scheduling with
play

Approximation schemes for machine scheduling with resource - PowerPoint PPT Presentation

Approximation schemes for machine scheduling with resource (in-)dependent processing times Klaus Jansen, Marten Maack, Malin Rau April 4, 2016 Scheduling parallel Tasks procesing time processors Scheduling parallel Tasks procesing time 6 7


  1. Approximation schemes for machine scheduling with resource (in-)dependent processing times Klaus Jansen, Marten Maack, Malin Rau April 4, 2016

  2. Scheduling parallel Tasks procesing time processors

  3. Scheduling parallel Tasks procesing time 6 7 4 8 5 2 3 1 processors

  4. Scheduling parallel Tasks 3 procesing time 8 8 6 7 7 5 6 4 8 4 5 2 2 3 1 1 processors

  5. Scheduling on identical machines procesing time identical machines

  6. Scheduling on identical machines procesing time 6 4 2 7 5 8 3 1 identical machines

  7. Scheduling on identical machines procesing time 5 8 7 3 6 6 2 4 4 2 7 5 8 3 1 1 identical machines

  8. Scheduling on identical machines with one extra resource procesing time identical resource machines

  9. Scheduling on identical machines with one extra resource 8 procesing time 6 3 4 5 7 2 1 identical resource machines

  10. Scheduling on identical machines with one extra resource 3 3 8 procesing time 8 8 6 7 5 7 5 3 4 1 1 6 6 5 4 4 7 2 2 2 1 identical resource machines

  11. 5 8 7 3 6 2 4 1 identical machines

  12. 3 5 8 8 8 7 3 7 5 6 4 6 2 4 2 1 1 identical parallel tasks machines

  13. 3 3 3 5 8 8 8 8 8 7 7 5 7 5 3 7 5 6 1 1 4 6 6 6 2 4 4 4 2 2 2 1 1 identical parallel tasks additional resource machines

  14. Problem Definition Given: ◮ m identical machines, ◮ one resource of size R ∈ N , ◮ a set of jobs J = { 1 , . . . , n } . Each job has ◮ a processing time p j ∈ Q and ◮ a resource amount r j ∈ N with r j ≤ R .

  15. Problem Definition Given: ◮ m identical machines, ◮ one resource of size R ∈ N , ◮ a set of jobs J = { 1 , . . . , n } . Each job has ◮ a processing time p j ∈ Q and ◮ a resource amount r j ∈ N with r j ≤ R . Goal: Find a schedule τ : J → Q ≥ 0 with minimum makespan, such that: � ∀ t ≥ 0 r j ≤ R , j : t ∈ [ τ ( j ) ,τ ( j )+ p j ) � ∀ t ≥ 0 1 ≤ m . j : t ∈ [ τ ( j ) ,τ ( j )+ p j )

  16. Known Results ◮ There is no approximation algorithm with absolute ratio < 1 . 5, unless P = NP (Drozdowski 1995) ◮ The list scheduling algorithm has absolute approximation ratio 3 − 3 / m (Garey and Graham 1975) ◮ There is a polynomial time approximation algorithm with absolute ratio 2 + ε (Niemeier, Wiese 2013) ◮ For the case of unit processing times there is an AFPTAS with A ( I ) ≤ ( 1 + ε ) OPT + O ( min { ( 1 /ε 2 ) ( 1 /ε ) , n log ( R ) /ε + 1 /ε 3 } ) (Epstein and Levin 2010)

  17. New Result Theorem There is an asymptotic FPTAS for the resource constrained scheduling problem with A ( I ) ≤ ( 1 + ε ) OPT ( I ) + O ( 1 /ε 2 ) p max , where p max is the maximal processing time in the set of jobs.

  18. Algorithm Overview 1. Simplify the instance and find an approximative preemptive schedule via a configuration LP . 2. Generalize the configurations by considering windows for narrow jobs. 3. Transform the preemptive schedule into a solution of a LP with generalized configurations. 4. Reduce the number of generalized configurations and windows in the LP solution. 5. Generate an integral solution.

  19. Simplifying ◮ Partition J into wide jobs J W and narrow jobs J N . ◮ Reduce the number of different wide resource ε R amounts to 1 /ε 2 . ◮ Glue together wide jobs with same resource amount. ◮ Discard widest group ◮ Simplified instance: I sup .

  20. Definition Configuration A configuration C is a multiset of jobs with: ◮ � j C ( j ) r j ≤ R , ◮ � j C ( j ) ≤ m . C ( j ) ∈ N says how often the job j is contained in C . Let C be the set of all configurations.

  21. Definition Configuration A configuration C is a multiset of jobs with: ◮ � j C ( j ) r j ≤ R , ◮ � j C ( j ) ≤ m . C ( j ) ∈ N says how often the job j is contained in C . Let C be the set of all configurations. m = 4 x C 2 � x C 1 × R

  22. Definition Configuration A configuration C is a multiset of jobs with: ◮ � j C ( j ) r j ≤ R , ◮ � j C ( j ) ≤ m . C ( j ) ∈ N says how often the job j is contained in C . Let C be the set of all configurations. m = 4 x C 2 � x C 1 × R

  23. Preemptive Schedule � min x C (1) C ∈C � C ( j ) x C ≥ p j ∀ j ∈ J sup (2) C ∈C x C ≥ 0 ∀ C ∈ C (3)

  24. Preemptive Schedule � min x C (1) C ∈C � C ( j ) x C ≥ p j ∀ j ∈ J sup (2) C ∈C x C ≥ 0 ∀ C ∈ C (3) ◮ Can be solved approximately by max-min-resource-sharing. ◮ An approximate solution with at most |J sup | + 1 non zero components can be computed in polynomial time.

  25. Generalized Configuration ◮ A window w = ( w r , w m ) is a pair, where ◮ w r denotes its resource amount and ◮ w m its number of machines. ◮ A generalized configuration ( C , w ) is a pair consisting of ◮ a configuration of wide jobs C and ◮ a window w where ◮ � W C ( j ) r j + w r ≤ R and j ∈J sup ◮ � W C ( j ) + w m ≤ m . j ∈J sup

  26. Generalized Preemptive Solution x ( C ′ x C 1 w 1 1 2 3 4 5 1 2 3 1 , w 1 ) x C 2 x ( C ′ w 1 7 �→ 7 1 6 4 8 1 6 2 , w 1 ) x ( C ′ x C 3 w 2 7 2 3 4 5 7 2 3 3 , w 2 ) 8 4 5 4 5 w 1 w 2 y 4 , w 1 = x C 1 + x C 2 y 5 , w 1 = x C 1 y 5 , w 2 = x C 3 y 8 , w 1 = x C 2 y 4 , w 2 = x C 3

  27. Generalized Preemptive Solution x ( C ′ x C 1 w 1 1 2 3 4 5 1 2 3 1 , w 1 ) x C 2 x ( C ′ w 1 7 �→ 7 1 6 4 8 1 6 2 , w 1 ) x ( C ′ x C 3 w 2 7 2 3 4 5 7 2 3 3 , w 2 ) 8 4 5 4 5 w 1 w 2 y 4 , w 1 = x C 1 + x C 2 y 5 , w 1 = x C 1 y 5 , w 2 = x C 3 y 8 , w 1 = x C 2 y 4 , w 2 = x C 3

  28. Generalized Preemptive Solution x ( C ′ x C 1 w 1 1 2 3 4 5 1 2 3 1 , w 1 ) x C 2 x ( C ′ w 1 7 �→ 7 1 6 4 8 1 6 2 , w 1 ) x ( C ′ x C 3 w 2 7 2 3 4 5 7 2 3 3 , w 2 ) 8 4 5 4 5 w 1 w 2 y 4 , w 1 = x C 1 + x C 2 y 5 , w 1 = x C 1 y 5 , w 2 = x C 3 y 8 , w 1 = x C 2 y 4 , w 2 = x C 3

  29. Generalized Preemptive Solution x ( C ′ x C 1 w 1 1 2 3 4 5 1 2 3 1 , w 1 ) x C 2 x ( C ′ w 1 7 �→ 7 1 6 4 8 1 6 2 , w 1 ) x ( C ′ x C 3 w 2 7 2 3 4 5 7 2 3 3 , w 2 ) 8 4 5 4 5 w 1 w 2 y 4 , w 1 = x C 1 + x C 2 y 5 , w 1 = x C 1 y 5 , w 2 = x C 3 y 8 , w 1 = x C 2 y 4 , w 2 = x C 3

  30. Generalized Configuration LP ∀ j ∈ J sup � � C ( j ) x ( C , w ) ≥ p j , (4) W C ∈C W w ∈W w ≤ w ( C ) � ∀ j ∈ J sup y j , w ≥ p j , (5) N w ∈W � � w m x ( C , w ) ≥ y j , w , ∀ w ∈ W (6) C ∈C W j ∈J N w ( C ) ≥ w � � x ( C , w ) ≥ r j y j , w , ∀ w ∈ W w r (7) C ∈C W j ∈J N w ( C ) ≥ w x ( C , w ) ≥ 0 , ∀ C ∈ C W , ∀ w ∈ W (8) ∀ w ∈ W , ∀ j ∈ J sup y j , w ≥ 0 , (9) N

  31. Generalized Configuration LP ∀ j ∈ J sup � � C ( j ) x ( C , w ) ≥ p j , (4) W C ∈C W w ∈W w ≤ w ( C ) � ∀ j ∈ J sup y j , w ≥ p j , (5) N w ∈W � � w m x ( C , w ) ≥ y j , w , ∀ w ∈ W (6) C ∈C W j ∈J N w ( C ) ≥ w � � x ( C , w ) ≥ r j y j , w , ∀ w ∈ W w r (7) C ∈C W j ∈J N w ( C ) ≥ w x ( C , w ) ≥ 0 , ∀ C ∈ C W , ∀ w ∈ W (8) ∀ w ∈ W , ∀ j ∈ J sup y j , w ≥ 0 , (9) N ◮ Basic solution has |J sup W | + |J sup | + 2 |W| non zero components. N ◮ At most |J sup W | + 2 |W| configurations and fractional jobs. ◮ |J sup W | ∈ O ( 1 /ε 2 ) , |W| ∈ O ( min {|J sup | , |C W |} )

  32. Reduce Number Of Windows ε 2 P pre Stack of generalized configu- rations with same number of wide jobs P pre : length of preemptive schedule

  33. Reduce Number Of Windows ε 2 P pre Stack of generalized configu- rations with same number of wide jobs P pre : length of preemptive schedule

  34. Reduce Number Of Windows ε 2 P pre Stack of generalized configu- rations with same number of wide jobs P pre : length of preemptive schedule

  35. Properties ◮ 1 /ε different stacks of generalized configurations. ◮ ε 2 P pre additional processing time per stack ◮ ε P pre additional total processing time ◮ Number of windows ≤ 1 /ε 2 + 2. ◮ Basic solution has O ( 1 /ε 2 ) configurations and O ( 1 /ε 2 ) fractional small jobs

  36. Integral Schedule → → p max → →

  37. Integral Schedule → → p max → →

  38. Integral Schedule → → p max → →

  39. Integral Schedule → → p max → →

  40. Integral Schedule → → p max → →

  41. Integral Schedule → → p max → →

  42. Integral Schedule w m � w ( C ) ≥ w x ( C , w ) ≥ � j ∈J N y j , w C ∈C W w r � w ( C ) ≥ w x ( C , w ) ≥ � j ∈J N r j y j , w C ∈C W p max h ( w )

  43. Integral Schedule w m � w ( C ) ≥ w x ( C , w ) ≥ � j ∈J N y j , w C ∈C W w r � w ( C ) ≥ w x ( C , w ) ≥ � j ∈J N r j y j , w C ∈C W p max h ( w )

  44. Integral Schedule w m � w ( C ) ≥ w x ( C , w ) ≥ � j ∈J N y j , w C ∈C W w r � w ( C ) ≥ w x ( C , w ) ≥ � j ∈J N r j y j , w C ∈C W p max h ( w )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend