approximation algorithms for contact representations of
play

Approximation Algorithms for Contact Representations of Rectangles - PowerPoint PPT Presentation

Approximation Algorithms for Contact Representations of Rectangles Michalis Bekos Thomas van Dijk Martin Fink Philipp Kindermann Stephen Kobourov Sergey Pupyrev Joachim Spoerhase Alexander Wolff Universit at T ubingen University of


  1. Our Results – Approximation Factors Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  2. Our Results – Approximation Factors Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  3. Our Results – Approximation Factors Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  4. Our Results – Approximation Factors Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  5. Tool #1: Gap

  6. Tool #1: Gap Knapsack items 2 e 3 e 4 e 2 e 1 e 1 e – size s i – value v i

  7. Tool #1: Gap Knapsack items bin 2 e 3 e 4 e 2 e 1 e 1 e – size s i – bin has capacity c – value v i

  8. Tool #1: Gap Knapsack items bin 2 e 3 e 3 e 4 e 2 e 2 e 4 e 1 e 1 e – size s i – bin has capacity c – value v i

  9. Tool #1: Gap Knapsack items bin 2 e 3 e 3 e 4 e 2 e 2 e 4 e 1 e 1 e – size s i – bin has capacity c – value v i – maximize total value packed

  10. Tool #1: Gap Knapsack Generalized Assignment Prob. items bin 2 e 3 e 3 e 4 e 2 e 2 e 4 e 1 e 1 e – size s i – bin has capacity c – value v i – maximize total value packed

  11. Tool #1: Gap Knapsack Generalized Assignment Prob. items items bin bin 1 2 2 e 4 e 3 e 3 e 3 e 3 e 4 e 2 e 4 e 2 e 2 e 2 e 4 e 1 e 4 e 1 e 2 e 4 e – size s i – bin has capacity c j j j – value v i – maximize total value packed j

  12. Tool #1: Gap Knapsack Generalized Assignment Prob. items items bin bin 1 2 2 e 4 e 3 e 3 e 3 e 3 e 4 e 2 e 4 e 2 e 2 e 2 e 4 e 1 e 4 e 1 e 2 e 4 e – size s i – bin has capacity c j j j – value v i – maximize total value packed j Theorem. Gap admits an approximation algorithm with ratio α = e / ( e − 1) ≈ 1.58. [Fleischer et al., MOR’11]

  13. Max-Crown for Stars u 1

  14. Max-Crown for Stars u 1 B 1

  15. Max-Crown for Stars u 4 u 2 u 1 u 3 u 5 B 3 B 4 B 1 B 5 B 2

  16. Max-Crown for Stars u 4 u 2 u 1 u 3 u 5 B 3 B 4 B 1 B 5 B 2

  17. Max-Crown for Stars u 4 Set up Gap : u 2 u 1 u 3 u 5 B 3 B 4 B 1 B 5 B 2

  18. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) u 1 u 3 u 5 B 3 B 4 B 1 B 5 B 2

  19. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 u 3 u 5 B 3 B 4 B 1 B 5 B 2

  20. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 B 3 B 4 B 1 B 5 B 2

  21. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf B 3 B 4 B 1 B 5 B 2

  22. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i B 3 B 4 B 1 B 5 B 2

  23. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 B 1 B 5 B 2

  24. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 Algorithm: B 1 B 5 B 2

  25. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 Algorithm: Assume that the 4 corner rectangles have contacts B 1 of length 1 2 in a fixed optimal solution. B 5 B 2

  26. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 Algorithm: Assume that the 4 corner rectangles have contacts B 1 of length 1 2 in a fixed optimal solution. B 5 B 2

  27. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 Algorithm: Assume that the 4 corner rectangles have contacts B 1 of length 1 2 in a fixed optimal solution. Each contact may be horizontal or vertical. B 5 B 2

  28. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 Algorithm: Assume that the 4 corner rectangles have contacts B 1 of length 1 2 in a fixed optimal solution. Each contact may be horizontal or vertical. Try all 2 4 possibilities B 5 B 2

  29. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 Algorithm: Assume that the 4 corner rectangles have contacts B 1 of length 1 2 in a fixed optimal solution. Each contact may be horizontal or vertical. Try all 2 4 possibilities by calling α -approx. for Gap . B 5 B 2

  30. Max-Crown for Stars u 4 Set up Gap : u 2 – eight bins (for the 4 sides and the 4 corners of B 1 ) – corner bins have capacity 1/2 u 1 – the capacity of side bins is their “free” length u 3 u 5 – items 2, . . . , n ; one for each leaf – the value of item i is p ( v 1 v i ), the profit of edge v 1 v i – item i has size 1/2 in corner bins, B 3 w i in top/bottom side bins, h i in left/right side bins B 4 Algorithm: Assume that the 4 corner rectangles have contacts B 1 of length 1 2 in a fixed optimal solution. Each contact may be horizontal or vertical. Try all 2 4 possibilities by calling α -approx. for Gap . B 5 B 2 ⇒ α -approx. algorithm for Max-Crown on stars �

  31. Overview Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  32. Overview Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 � star α 1 + ε tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  33. Overview Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 � star α 1 + ε tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 α 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  34. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma.

  35. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i ,

  36. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G .

  37. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Analysis.

  38. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Analysis.

  39. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis.

  40. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 ,

  41. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits,

  42. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg.

  43. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i .

  44. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 .

  45. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 .

  46. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 . Then

  47. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 . Then ALG ≥

  48. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 . Then ALG ≥ ALG 1 ≥

  49. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 . Then ALG ≥ ALG 1 ≥ OPT 1 ≥ α 1

  50. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 . Then ALG ≥ ALG 1 ≥ OPT 1 ≥ OPT 1 + OPT 2 ≥ α 1 α 1 + α 2

  51. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 . Then ALG ≥ ALG 1 ≥ OPT 1 ≥ OPT 1 + OPT 2 OPT ≥ . � α 1 α 1 + α 2 α 1 + α 2

  52. Tool #2: The Combination Lemma Let G 1 = ( V , E 1 ), G 2 = ( V , E 2 ), G = ( V , E 1 ∪ E 2 ). Lemma. If Max-Crown admits an α i -approx. on G i , then Max-Crown admits ( α 1 + α 2 )-approx. on G . Algorithm. Proof. Apply α 1 -approx. to G 1 and α 2 -approx. to G 2 . Return result with larger profit for G . Analysis. For G , G 1 , G 2 , – let OPT, OPT 1 , OPT 2 be the optimum profits, – let ALG, ALG 1 , ALG 2 be the profits of the approx. alg. By def., ALG i > OPT i /α i . Clearly, OPT ≤ OPT 1 + OPT 2 . Assume OPT 1 /α 1 ≥ OPT 2 /α 2 . Then ALG ≥ ALG 1 ≥ OPT 1 ≥ OPT 1 + OPT 2 OPT ≥ . � α 1 α 1 + α 2 α 1 + α 2

  53. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def.

  54. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests.

  55. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof.

  56. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars.

  57. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars. Treat each star indep.

  58. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars. Treat each star indep. Thm. Max - Crown admits – a 2 α -approx. on trees, – a 3 α -approx. on outerplanar graphs, – a 5 α -approx. on planar graphs.

  59. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars. Treat each star indep. Thm. Max - Crown admits – a 2 α -approx. on trees, – a 3 α -approx. on outerplanar graphs, – a 5 α -approx. on planar graphs. Proof.

  60. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars. Treat each star indep. Thm. Max - Crown admits – a 2 α -approx. on trees, – a 3 α -approx. on outerplanar graphs, – a 5 α -approx. on planar graphs. Proof. Can cover any tree by 2 star forests (“star arboricity 2” ).

  61. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars. Treat each star indep. Thm. Max - Crown admits – a 2 α -approx. on trees, – a 3 α -approx. on outerplanar graphs, – a 5 α -approx. on planar graphs. Proof. Can cover any tree by 2 star forests (“star arboricity 2” ).

  62. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars. Treat each star indep. Thm. Max - Crown admits – a 2 α -approx. on trees, – a 3 α -approx. on outerplanar graphs, – a 5 α -approx. on planar graphs. Proof. Can cover any tree by 2 star forests (“star arboricity 2” ). Now apply the combination lemma.

  63. Star Forests, Trees, (Outer-) Planar Graphs A star forest is the disjoint union of a set of stars. Def. Thm. Max - Crown admits an α -approx. on star forests. Proof. Use the α -approx. alg. for stars. Treat each star indep. Thm. Max - Crown admits – a 2 α -approx. on trees, – a 3 α -approx. on outerplanar graphs, – a 5 α -approx. on planar graphs. Proof. Can cover any tree by 2 star forests (“star arboricity 2” ). Now apply the combination lemma. Outerplanar | planar graphs have star arboricity 3 | 5. [Hakimi et al., DM’96] �

  64. Overview Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε � tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε outerplanar 3 α 3 α 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  65. Overview Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε � � tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε 3 α � � outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  66. Overview Weighted Unweighted new ◦ new ◦ Graph class old ⋆ cycle, path 1 star α 1 + ε � � tree 2 α , NP-hard 2 + ε 2 max-degree ∆ ⌊ ( ∆ + 1) / 2 ⌋ planar max-deg. ∆ 1 + ε 3 α � � outerplanar 3 + ε planar 5 α 5 + ε bipartite 16 α/ 3 ≈ 8.4 APX-hard general rand.: 32 α/ 3 ≈ 16.9 5 + 16 α/ 3 ≈ 13.4 det.: 40 α/ 3 ≈ 21.1 ⋆ ) [Barth, Fabrikant, Kobourov, Lubiw, N¨ ollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14] ◦ ) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted] α = e / ( e − 1) ≈ 1.58

  67. Tool #1 ++ : PTAS for Gap with O (1) bins Theorem. Gap with O (1) bins admits a PTAS. [Briest, Krysta V¨ ocking: SIAM J. Comput.’11]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend