approximating the permanent of positive semidefinite
play

Approximating the Permanent of Positive Semidefinite Matrices Nima - PowerPoint PPT Presentation

Approximating the Permanent of Positive Semidefinite Matrices Nima Anari Joint work with Leonid Shayan Amin Gurvits Oveis Gharan Saberi 1 / 14 Example a b M c d det M ad bc per M ad bc Determinant Permanent det ( M )


  1. Approximating the Permanent of Positive Semidefinite Matrices Nima Anari Joint work with Leonid Shayan Amin Gurvits Oveis Gharan Saberi 1 / 14

  2. Example a b M c d det M ad bc per M ad bc Determinant Permanent ∑ ∑ det ( M ) = sgn ( σ ) M 1 ,σ (1) . . . M n ,σ ( n ) per ( M ) = M 1 ,σ (1) . . . M n ,σ ( n ) σ ∈ S n σ ∈ S n 2 / 14

  3. Determinant Permanent ∑ ∑ det ( M ) = sgn ( σ ) M 1 ,σ (1) . . . M n ,σ ( n ) per ( M ) = M 1 ,σ (1) . . . M n ,σ ( n ) σ ∈ S n σ ∈ S n 2 × 2 Example [ a ] b M = c d det ( M ) = ad − bc per ( M ) = ad + bc 2 / 14

  4. #P-hard to compute sign of per M [Aaronson’11]. #P-hard to compute per M for M [Grier-Schaefger’16]. Complexity of Permanent #P-hard to compute per ( M ) for 0/1 matrices [Valiant’79]. 3 / 14

  5. #P-hard to compute per M for M [Grier-Schaefger’16]. Complexity of Permanent #P-hard to compute per ( M ) for 0/1 matrices [Valiant’79]. #P-hard to compute sign of per ( M ) [Aaronson’11]. 3 / 14

  6. Complexity of Permanent #P-hard to compute per ( M ) for 0/1 matrices [Valiant’79]. #P-hard to compute sign of per ( M ) [Aaronson’11]. #P-hard to compute per ( M ) for M ⪰ 0 [Grier-Schaefger’16]. • • • 3 / 14

  7. Positive Matrices (M ) PSD Matrices (M ) Permanent is always nonnegative: Permanent is always nonnegative: per M per M Deterministic n -approximation Randomized -approximation [Marcus’63]: M M n n . (FRPAS) n [Jerrum-Sinclair-Vigoda’04]. Improved to k n k -approximation in O k log n n -approximation time [Lieb’66]. Deterministic [Gurvits-Samorodnitsky’14]. Approximating the Permanent Additive ± ϵ | M | n approximation [Gurvits’05]. 4 / 14

  8. PSD Matrices (M ) Permanent is always nonnegative: per M Deterministic n -approximation Randomized -approximation [Marcus’63]: M M n n . (FRPAS) n [Jerrum-Sinclair-Vigoda’04]. Improved to k n k -approximation in O k log n n -approximation time [Lieb’66]. Deterministic [Gurvits-Samorodnitsky’14]. Approximating the Permanent Additive ± ϵ | M | n approximation [Gurvits’05]. Positive Matrices (M ≥ 0 ) Permanent is always nonnegative: per ( M ) ≥ 0 . 4 / 14

  9. PSD Matrices (M ) Permanent is always nonnegative: per M Deterministic n -approximation [Marcus’63]: M M n n . n Improved to k n k -approximation in O k log n n -approximation time [Lieb’66]. Deterministic [Gurvits-Samorodnitsky’14]. Approximating the Permanent Additive ± ϵ | M | n approximation [Gurvits’05]. Positive Matrices (M ≥ 0 ) Permanent is always nonnegative: per ( M ) ≥ 0 . Randomized (1 + ϵ ) -approximation (FRPAS) [Jerrum-Sinclair-Vigoda’04]. 4 / 14

  10. Deterministic n -approximation [Marcus’63]: M M n n . n Improved to k n k -approximation in O k log n time [Lieb’66]. Approximating the Permanent Additive ± ϵ | M | n approximation [Gurvits’05]. Positive Matrices (M ≥ 0 ) PSD Matrices (M ⪰ 0 ) Permanent is always nonnegative: Permanent is always nonnegative: per ( M ) ≥ 0 . per ( M ) ≥ 0 . Randomized (1 + ϵ ) -approximation (FRPAS) [Jerrum-Sinclair-Vigoda’04]. Deterministic 2 n -approximation [Gurvits-Samorodnitsky’14]. 4 / 14

  11. n Improved to k n k -approximation in O k log n time [Lieb’66]. Approximating the Permanent Additive ± ϵ | M | n approximation [Gurvits’05]. Positive Matrices (M ≥ 0 ) PSD Matrices (M ⪰ 0 ) Permanent is always nonnegative: Permanent is always nonnegative: per ( M ) ≥ 0 . per ( M ) ≥ 0 . Deterministic n ! -approximation Randomized (1 + ϵ ) -approximation [Marcus’63]: M 1 , 1 . . . M n , n . (FRPAS) [Jerrum-Sinclair-Vigoda’04]. Deterministic 2 n -approximation [Gurvits-Samorodnitsky’14]. 4 / 14

  12. Approximating the Permanent Additive ± ϵ | M | n approximation [Gurvits’05]. Positive Matrices (M ≥ 0 ) PSD Matrices (M ⪰ 0 ) Permanent is always nonnegative: Permanent is always nonnegative: per ( M ) ≥ 0 . per ( M ) ≥ 0 . Deterministic n ! -approximation Randomized (1 + ϵ ) -approximation [Marcus’63]: M 1 , 1 . . . M n , n . (FRPAS) n ! [Jerrum-Sinclair-Vigoda’04]. Improved to k ! n / k -approximation in time 2 O ( k + log ( n )) [Lieb’66]. Deterministic 2 n -approximation [Gurvits-Samorodnitsky’14]. 4 / 14

  13. Theorem [A-Gurvits-Oveis Gharan-Saberi'17] The permanent of PSD matrices M ∈ C n × n can be approximated, in deterministic polynomial time, within ( e γ +1 ) n ≃ 4 . 84 n . 5 / 14

  14. Standard multivariate complex Gaussian: z z z n i.i.d. and z i . General (circularly-symmetric) complex Gaussian: g Cz g CC Wick's Formula g g n per CC Complex Gaussians Im ( z ) Re ( z ) z ∼ C N (0 , 1) P [ z ] = 1 π e −| z | 2 6 / 14

  15. General (circularly-symmetric) complex Gaussian: g Cz g CC Wick's Formula g g n per CC Complex Gaussians Standard multivariate complex Im ( z ) Gaussian: z = ( z 1 , . . . , z n ) i.i.d. and z i ∼ C N (0 , 1) . Re ( z ) z ∼ C N (0 , 1) P [ z ] = 1 π e −| z | 2 6 / 14

  16. Wick's Formula g g n per CC Complex Gaussians Standard multivariate complex Im ( z ) Gaussian: z = ( z 1 , . . . , z n ) i.i.d. and z i ∼ C N (0 , 1) . General (circularly-symmetric) complex Gaussian: Re ( z ) g = Cz , g ∼ C N (0 , CC † ) . z ∼ C N (0 , 1) P [ z ] = 1 π e −| z | 2 6 / 14

  17. Complex Gaussians Standard multivariate complex Im ( z ) Gaussian: z = ( z 1 , . . . , z n ) i.i.d. and z i ∼ C N (0 , 1) . General (circularly-symmetric) complex Gaussian: Re ( z ) g = Cz , g ∼ C N (0 , CC † ) . z ∼ C N (0 , 1) P [ z ] = 1 π e −| z | 2 Wick's Formula [ | g 1 | 2 . . . | g n | 2 ] = per ( CC † ) . E 6 / 14

  18. n . The Schur power is a minor of M M schur M The permanent is an eigenvalue: schur M per M M per M Permanent is monotone w.r.t. : Permanent is Loewner-Monotone M M per M per M = = = Schur Power The Schur power of an n × n matrix M is   . . .  . . . . . .      . .  . . n !   . M σ (1) ,τ (1) . . . M σ ( n ) ,τ ( n ) .    . . .    . . .  . . .  � �� � n ! 7 / 14

  19. The permanent is an eigenvalue: schur M per M M per M Permanent is monotone w.r.t. : Permanent is Loewner-Monotone M M per M per M = = Schur Power The Schur power of an n × n matrix M is The Schur power is a minor of M ⊗ n .   . . .  . . . . . .   M ⪰ 0 = ⇒ schur ( M ) ⪰ 0    . .  . . n !   . M σ (1) ,τ (1) . . . M σ ( n ) ,τ ( n ) .    . . .    . . .  . . .  � �� � n ! 7 / 14

  20. Permanent is monotone w.r.t. : Permanent is Loewner-Monotone M M per M per M = Schur Power The Schur power of an n × n matrix M is The Schur power is a minor of M ⊗ n .   . . .  . . . . . .   M ⪰ 0 = ⇒ schur ( M ) ⪰ 0    . .  . . n !   . M σ (1) ,τ (1) . . . M σ ( n ) ,τ ( n ) .   The permanent is an eigenvalue:  . . .    . . .  . . .  schur ( M )1 = per ( M )1 . � �� � n ! M ⪰ 0 = ⇒ per ( M ) ≥ 0 7 / 14

  21. Schur Power The Schur power of an n × n matrix M is The Schur power is a minor of M ⊗ n .   . . .  . . . . . .   M ⪰ 0 = ⇒ schur ( M ) ⪰ 0    . .  . . n !   . M σ (1) ,τ (1) . . . M σ ( n ) ,τ ( n ) .   The permanent is an eigenvalue:  . . .    . . .  . . .  schur ( M )1 = per ( M )1 . � �� � n ! M ⪰ 0 = ⇒ per ( M ) ≥ 0 Permanent is monotone w.r.t. ⪰ : Permanent is Loewner-Monotone M 1 ⪰ M 2 ⪰ 0 = ⇒ per ( M 1 ) ≥ per ( M 2 ) ≥ 0 7 / 14

  22. Theorem [A-Gurvits-Oveis Gharan-Saberi'17] For any M there exist diagonal matrix D and rank-1 matrix vv such that D M vv n per vv . and per D Approximation using Monotonicity Permanent is monotone w.r.t. ⪰ : D ⪰ M ⪰ vv † = ⇒ per ( D ) ≥ per ( M ) ≥ per ( vv † ) . 8 / 14

  23. Approximation using Monotonicity Permanent is monotone w.r.t. ⪰ : D ⪰ M ⪰ vv † = ⇒ per ( D ) ≥ per ( M ) ≥ per ( vv † ) . Theorem [A-Gurvits-Oveis Gharan-Saberi'17] For any M ⪰ 0 there exist diagonal matrix D and rank-1 matrix vv † such that D ⪰ M ⪰ vv † , and per ( D ) ≤ 4 . 85 n per ( vv † ) . 8 / 14

  24. Equivalently solve the convex program log per D inf D subject to M D No such convex program for the best rank-1 matrix. Computing the Approximation Solve and output the following per ( D ) , inf D subject to D ⪰ M . 9 / 14

  25. Computing the Approximation Solve and output the following per ( D ) , inf D subject to D ⪰ M . Equivalently solve the convex program log ( per (( D − 1 ) − 1 ) , inf D − 1 M − 1 ⪰ D − 1 ⪰ 0 . subject to No such convex program for the best rank-1 matrix. 9 / 14

  26. By duality, there is B with diag B such that I M B : B MB B is called a correlation matrix. Let P proj imag B . Then M P because x imag B x By = Mx MBy By x Px Prove the “PSD Van der Waerden” PSD Van der Waerden [A-Gurvits-Oveis Gharan-Saberi'17] If B is a correlation matrix and P the orthogonal projection onto the image of B, then n per P = Sketch of Proof Renormalize rows and columns to assume D = I. 10 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend