approximating extent measures of points
play

Approximating Extent Measures of Points Pankaj K. Agarwal Sariel - PowerPoint PPT Presentation

Approximating Extent Measures of Points Pankaj K. Agarwal Sariel Har-Peled Kasturi R. Varadarajan CS468, Winter 2006 Extent Measures Given a point set P R d Extent measures statistics about P or its enclosing shape Some


  1. Approximating Extent Measures of Points Pankaj K. Agarwal Sariel Har-Peled Kasturi R. Varadarajan CS468, Winter 2006

  2. Extent Measures • Given a point set P ⊆ R d • Extent measures – statistics about P or its enclosing shape • Some examples - k -th largest distance - Min. volume bounding box - Min. width bounding slab - Min. enclosing sphere - Min. enclosing cylinder - Min. width enclosing spherical shell - Min. width enclosing cylindrical shell

  3. Main Result • Technique for ǫ -approximating (a large class of) extent measures • Compute a subset of the input Q ⊆ P ( coreset ) which - Preserves the solution to ǫ -accuracy - Small size (does not depend on | P | , only on ǫ ) • General properties � 1 � � O (1) � - Strong LTAS, running time O n + ǫ �� 1 � O (1) � - Coreset size O ǫ - Exponents depend on d • Simple to implement, and some improvements - Min. enclosing spherical shell exponent down from O ( d 2 ) [Chan 02] to O ( d )

  4. Key Definitions • Lead to two main approximation primitives • Directional width of a point set P in the direction u ∈ R d − 1 w ( u , P ) = max p ∈ P � [ u , 1] , p � − min p ∈ P � [ u , 1] , p � • Extent of a set F of ( d − 1)-variate functions at x ∈ R d − 1 e ( x , F ) = max f ∈ F f ( x ) − min f ∈ F f ( x )

  5. Optimization Primitives • Q ⊆ P is an ǫ -approximation for P on ∆ ⊆ R d − 1 if for all u ∈ ∆ (1 − ǫ ) w ( u , P ) ≤ w ( u , Q ) ≤ w ( u , P ) • G ⊆ F is an ǫ -approximation for F on ∆ ⊆ R d − 1 if for all x ∈ ∆ (1 − ǫ ) e ( x , F ) ≤ w ( u , G ) ≤ e ( x , F ) • Note: Always pick a subset of the input – coreset

  6. Classes of Extent Measures • Faithful - Approximated through directional width - “Convex” measures (bounding shapes) • Other - Approximated through extent - “Concave” measures (“shells”)

  7. Overview (A) Strong LTASs for directional width - Reduction to “fat” point sets - Algorithm 1: Grid - Algorithm 2: Polytope - Algorithm 3: Decomposition Strong LTASs for extent - Linear functions (hyperplanes) - Polynomial functions - r -th roots of polynomials (B) Dynamic updates Applications to specific extent measures

  8. Reduction to “Fat” Point Sets • A point set P ∈ R d is α -fat if there exists a translation t such that α C ⊆ CH ( P ) + t ⊆ C = [ − 1 , 1] d • Sufficient to consider computing coresets for α -fat point sets • Step 1: Every point set can be made α -fat by applying a linear transformation, where α = α ( d ) • Step 2: Every linear transformation preserves the approximation ratio of an arbitrary coreset - The size and construction time are clearly preserved

  9. Step 1: There Exists a “Fattening Transform” • [Barequet, Har-Peled 01]: Let P ⊆ R d be of size n . Can compute in O ( n ) time a box B and a vector t ∈ R d such that α B ⊆ CH ( P + t ) ⊆ B B CH (P) • Recall: α = 1 / 10? for d = 3 αB • Choose T so that T ( B ) = C

  10. Step 2: Invariance Under Linear Transforms • Lemma: Let T ( x ) = Mx + b be a non-degenerate linear transform. Q ⊆ P ǫ -approximates P over ∆ ⊆ R d − 1 if and only if T ( Q ) ǫ -approximates T ( P ) over { v | [ v , 1] = M T [ u , 1] , u ∈ ∆ } • Proof: Easy by definition - Note: can assume T ( x ) = Mx - Also, � [ u , 1] , Mp � = � M T [ u , 1] , p �

  11. The Case of α -fat Point Sets • From now on assume α C ⊆ CH ( P ) ⊆ C where α depends only on d , not on n

  12. The Case of α -fat Point Sets • From now on assume α C ⊆ CH ( P ) ⊆ C where α depends only on d , not on n • Lemma [Rough approximation]: w ( x , P ) ≥ 2 α || x || max p ∈ P � x , p � = || x || · max p ∈ P � x ∀ x ∈ R d : || x || , p � ≥ || x || α � �� � projection For x d = 1: max p ∈ P � x , p � ≥ α || x || min p ∈ P � x , p � ≤ − α || x ||

  13. The Case of α -fat Point Sets • From now on assume α C ⊆ CH ( P ) ⊆ C where α depends only on d , not on n • Lemma [Rough approximation]: w ( x , P ) ≥ 2 α || x || max p ∈ P � x , p � = || x || · max p ∈ P � x ∀ x ∈ R d : || x || , p � ≥ || x || α � �� � projection For x d = 1: max p ∈ P � x , p � ≥ α || x || min p ∈ P � x , p � ≤ − α || x || • Lemma [Hausdorff dist.]: If max p ∈ P min q ∈ Q || p − q || ≤ ǫα then Q is an ǫ -approximation for P

  14. The Case of α -fat Point Sets • From now on assume α C ⊆ CH ( P ) ⊆ C where α depends only on d , not on n • Lemma [Rough approximation]: w ( x , P ) ≥ 2 α || x || max p ∈ P � x , p � = || x || · max p ∈ P � x ∀ x ∈ R d : || x || , p � ≥ || x || α � �� � projection For x d = 1: max p ∈ P � x , p � ≥ α || x || min p ∈ P � x , p � ≤ − α || x || • Lemma [Hausdorff dist.]: If max p ∈ P min q ∈ Q || p − q || ≤ ǫα then Q is an ǫ -approximation for P w ( x , P ) − w ( x , Q ) ≤ � x , p 1 − p 2 � − � x , q 1 − q 2 �

  15. The Case of α -fat Point Sets • From now on assume α C ⊆ CH ( P ) ⊆ C where α depends only on d , not on n • Lemma [Rough approximation]: w ( x , P ) ≥ 2 α || x || max p ∈ P � x , p � = || x || · max p ∈ P � x ∀ x ∈ R d : || x || , p � ≥ || x || α � �� � projection For x d = 1: max p ∈ P � x , p � ≥ α || x || min p ∈ P � x , p � ≤ − α || x || • Lemma [Hausdorff dist.]: If max p ∈ P min q ∈ Q || p − q || ≤ ǫα then Q is an ǫ -approximation for P w ( x , P ) − w ( x , Q ) ≤ � x , p 1 − p 2 � − � x , q 1 − q 2 � ≤ |� x , p 1 − p 2 �| − |� x , q 1 − q 2 �|

  16. The Case of α -fat Point Sets • From now on assume α C ⊆ CH ( P ) ⊆ C where α depends only on d , not on n • Lemma [Rough approximation]: w ( x , P ) ≥ 2 α || x || max p ∈ P � x , p � = || x || · max p ∈ P � x ∀ x ∈ R d : || x || , p � ≥ || x || α � �� � projection For x d = 1: max p ∈ P � x , p � ≥ α || x || min p ∈ P � x , p � ≤ − α || x || • Lemma [Hausdorff dist.]: If max p ∈ P min q ∈ Q || p − q || ≤ ǫα then Q is an ǫ -approximation for P w ( x , P ) − w ( x , Q ) ≤ � x , p 1 − p 2 � − � x , q 1 − q 2 � ≤ |� x , p 1 − p 2 �| − |� x , q 1 − q 2 �| ≤ |� x , ( p 1 − q 1 ) − ( p 2 − q 2 ) �| ≤ || x || · 2 αǫ

  17. Algorithm 1: Grid ǫα • Grid of cell size √ 2 d

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend