application of molecular techniques in virology
play

Application of molecular techniques in Virology Suzan D Pas medical - PowerPoint PPT Presentation

Application of molecular techniques in Virology Suzan D Pas medical molecular microbiologist 1 Viroscience lab, Erasmus MC, Rotterdam, the Netherlands Molecular techniques in virus diagnostics Qualitative and quantitative (RT-)PCRs


  1. Application of molecular techniques in Virology Suzan D Pas – medical molecular microbiologist 1 Viroscience lab, Erasmus MC, Rotterdam, the Netherlands

  2. Molecular techniques in virus diagnostics  Qualitative and quantitative (RT-)PCRs  Qualitative positive/negative answers for clinical decisions  RSV for quarantine  Respiratory viral pathogens for stopping antibiotics  Etc..  Quantitative assays  Associations with progression to disease  Follow-up antiviral treatment  Determine genotypic traits that influence clinical decision making  Antiviral resistance after therapy failure in HIV/HBV/CMV/HSV  Determine sub-/genotype that may negatively influence response to therapy (HBV/HCV/HPV)

  3. Course of Hepatitis E virus infection in AlloHSCT recipient HEV RNA ALT Versluis et al, Blood2013

  4. Benefits of molecular diagnostics in clinical virology  It saves patient lives  It saves nursery costs  Compared to virus culture  Faster  Less hands on time (cheaper)  More informative (quantitative)  In general robust (not depending on quality of difficult to control materials like living cells)

  5. Molecular diagnostic workflow @ Erasmus MC 1. CE/IVD automated docked CAP/CTM high throughput, high QC CatA blood borne viruses : HIV, HBV and HCV qPCR 2. Semi-automated workflow high throughput, high QC herpes panel (+JC, BK parvo) gastro-enteritis panel, respiratory virus panel 3. Cito / semi manual line low-medium throughput flexibel, manual pipetting exotic viral diseases 4. Point of impact assays

  6. Point of impact vs point of care tests Point of care X laboratory Point of impact For virology: - resp: FLuA/FluB/RSV - HIV at anonymous testing site

  7. POC / POI Molecular diagnostics Aries - Luminex Cepheid geneXprt Genmark Dx Filmarray - Alere i Biomerieux Limitations: Simplexa - sensitivity Focus - Less variety of tests diagnostics - Expensive!

  8. Number of targets with in-house real-time (RT-)PCR 1995 2000 2005 2015 2010 Herpes viruses Respiratory viruses resistance markers HSV-1/2 Influenza A/B; Influenza EBV; RSV A/B; HMPV; (275/pan275/119/ HIV-2; CMV; PIV1-4; Rhino; 292/152/198/294) HBV; VZV; HCoV-OC43; -229E; HGV; HHV-6/-7/-8; -NL63; -HKU; -SARS Phocine Distemper Virus 2010 HEV JCV/BKV; Boca; Adeno; MPn Herpes B; 2012 HCoV- Phocine Herpes virus MERS 2014 2002 Sapovirus 2005 Enterovirus/ Astrovirus Norovirus Parecho Rotavirus GI&GII In total >90 targets Zika virus Other targets: Mumps; Measles; Rubella; Dengue; YFV; HDV; Hantaviruses; JEV; Lassa; Ebola; Marburg; WNV; Rabies; LCMV; CHV; Pox

  9. Production MDx workgroup Viroscience 7000 CMV EBV 6000 Entero HBV HCV 5000 Flu A HIV 4000 # (RT-)PCR 3000 2000 1000 0 1996 1998 2000 2002 2004 2006 2008 2010 2012 Year

  10. Automated molecular diagnostic work-flow Secondairy Purification Amplification PCR Report Sample RNA/DNA Detection Setup handling Middleware software LIMS

  11. Issues to consider in quantification  Sampling: distribution (in space and time) of the virus of interest  Respiratory viruses, Varicella Zoster in blisters  Quality control  Efficiency of nucleic acid extraction and sample type  Plasma versus urine, CSF, Faeces etc.  Chemistry of downstream detection  Variation in the primers/probe region targeted  Mismatch tolerance of the enzyme platform

  12. Issues to consider in quantification  Sampling: distribution (in space and time) of the virus of interest  Respiratory viruses, Varicella Zoster in blisters  Quality control  Efficiency of nucleic acid extraction and sample type  Plasma versus urine, CSF, Faeces etc.  Chemistry of downstream detection  Variation in the primers/probe region targeted  Mismatch tolerance of the enzyme platform

  13. Internal/External controls QC plots (Levey-Jennings charts – Westgard rules) More info: https://www.westgard.com/lesson12.htm

  14. QC parameters of molecular diagnostic assays 1 robustness 2 accuracy 3 Specificity precision – repeatability 4A 4A precision - intermediate precision 5 linearity / efficiency 6 linear range 7 Lower limit of detection (LLOD) 8 Lower limit of quantification (LLOQ) 9 selectivity 10 stability 11 carry-over According to ISO15189:2012 guidelines

  15. Issues to consider in quantification  Sampling: distribution (in space and time) of the virus of interest  Respiratory viruses, Varicella Zoster in blisters  Quality control  Efficiency of nucleic acid extraction and sample type  Plasma versus urine, CSF, Faeces etc.  Chemistry of downstream detection  Variation in the primers/probe region targeted  Mismatch tolerance of the enzyme platform

  16. Efficiency of nucleic acid extraction Universal Internal Viral Control Phocine Herpes Virus 1 (PhHV)  Herpesvirus  DNA control Phocine Distemper Virus (PDV)  Morbillivirus  RNA control Sample + known concentration of internal control

  17. Comparison different clinical samples Ct values internal control PhHV-1 MagnaPure LC 38 38 38 36 36 36 * * 34 34 34 Ct values on ABI7700 Ct values on ABI7700 Ct values on ABI7700 * * 32 32 32 30 30 30 28 28 28 26 26 26 24 24 24 Plasma Plasma Plasma Serum Serum Serum CSF CSF CSF Faeces Faeces Faeces Urine Urine Urine Swabs Swabs Swabs

  18. Issues to consider in quantification  Sampling: distribution (in space and time) of the virus of interest  Respiratory viruses, Varicella Zoster in blisters  Quality control  Efficiency of nucleic acid extraction and sample type  Plasma versus urine, CSF, Faeces etc.  Chemistry of downstream detection  Variation in the primers/probe region targeted  Mismatch tolerance of the enzyme platform

  19. Variation in the primers/probe region targeted - CMV UL54 Van Doornum et al. JCM 2003

  20. Dual target real time PCR Genome CMV 5’ - - 3’ UL54 UL75 If there is a mutation in either of the primer/probe sites  the other PCR will ‘take over‘

  21. Case I – no mutations in UL54 primer/probe site 6,00 log (c/ml) 5,50 5,00 LOD UL54 (c/ml) log viral load (IU/ml) log(IU/ml) log Viral load (c/ml) 4,50 LOD UL54+UL75 (IU/ml) 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,00 0,50 08-09-2012 13-09-2012 18-09-2012 23-09-2012 28-09-2012 03-10-2012 08-10-2012 13-10-2012 18-10-2012 23-10-2012 28-10-2012

  22. Case II – Merlin strain 6,00 log (c/ml) 5,50 LOD UL54 (c/ml) 5,00 log(IU/ml) log viral load (IU/ml) 4,50 log Viral load (c/ml) LOD UL54+UL75 (IU/ml) 4,00 3,50 3,00 2,50 2,00 1,50 1,00 0,00 0,50 26-02-2011 06-06-2011 14-09-2011 23-12-2011 01-04-2012 10-07-2012 18-10-2012

  23. Influence of mastermix composition on primer bindingsite mismatch tolerance Stadhouders et al., Journal of Mol. Diag. 2010

  24. Single primer-template mismatch behavior FVMM (Taq) rev-primer GOLD (Taq) HawkZo5 (rTth) EZ (rTth) 14 12 10 Increase in Ct-value 8 6 4 2 0 C-T C-C G-G A-C A-G A-C A-G A-C A-G T-T T-C T-G A-C A-G G-G C-A G-A G-T A-A A-A A-A A-A G-A G-T NT1 NT2 NT3 NT5  rTth based RT-PCR: low mismatch tolerance  FVMM (MMLV-Taq based) : high mismatch tolerence

  25. Single primer-template mismatch behavior FVMM (Taq) fwd-primer GOLD (Taq) HawkZo5 (rTth) EZ (rTth) 14 12 10 8 increase in Ct value 6 4 2 0 T-T T-G T-C A-C A-G A-A T-T T-G T-C G-T G-G G-A G-T G-A G-G T-T T-G T-C C-T C-A C-C C-T C-C C-A NT1 NT2 NT3 NT5 Forward primer: high tolerance for Hawk Zo5 high tolerance for FVMM, except for A-A and A-G mismatch at 1 st nucleotide !!

  26. Alignment EMC HeV primers-probe – 5’UTR probe forward reverse A-A mismatch!!  FVMM Rev primer  Hawk Zo5 discrimination (rTth) discrimination

  27. Use of mismatch tolerance in assay design HRV-strains (N=87) HeV-strains (N=54) assay EZ (old) HawkZo5 FVMM 2-step Gold (old) HawkZo5 FVMM Old EMC 75 nd 83 nd nd 2 HRV set New EMC HRV nd 87 87 nd 2 1** HRV-set 4 Published nd 87 87 nd 46 47 HRV set¹ old EMC 6 nd 86 54 nd 54 HeV set² New EMC HeV nd 0 2* nd 54 54 HeV set 4 Published nd 0 42 nd 54 54 HeV set 3 * HRV-8 and HRV-9 had a Ct-delay respectively 10 and 17 cycles, fluorescence <0.2 ** HeV-echo7 had a Ct-delay > 20 cycles, fluorescence <0.35 ¹ Lu et al., J.clin. Microbiol. 2008 46:533-539 2 Doornum et al., J. Med. Virology 2007 79:1868-1876 3 Nijhuis et al., J. clin. Microbiol. 2002 40:3666-3670 4 Voermans et al, in preparation

  28. GENOTYPING / DRUG RESISTANCE ANALYSIS

  29. Sanger sequencing: genotyping to predict response Response by Genotype HBeAg loss end of follow-up 47% 47% 50 50 44% 44% % % 40 40 28% 28% 30 30 25% 25% 20 20 10 10 0 0 B C D A A B C D n=90 n=23 n=23 n=39 n=39 n=103 n=103 n=90 Flink et al, Am J Gastroenterol. 2006 Feb;101(2):297-303

  30. Variant detection techniques in virology for drug resistance screening Start antiviral therapy Course of infection HBV Replication Time Fung, Antivir Ther 2004; Locarnini, Antivir Ther 2004

  31. Genotyping / drug resistance detection Sanger sequencing OR population sequencing C T A T A T G G A T G A T G T G G Detection limit: down to 25% of mutant in a population Complete sequence information No detection of double infections Pas et al. JCV2002

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend