announcements post midterm feedback form 5 mins
play

Announcements Post Midterm Feedback Form (< 5 mins) - PDF document

Announcements Post Midterm Feedback Form (< 5 mins) https://forms.gle/TFw1D1SbGRfxw2TB8 Homework k 6: Baye yes s Nets s I (lead TA: Eli) Due Fri 1 Nov at 11:59pm Homework k 7: Baye yes s Nets s II (lead TA: Eli)


  1. Announcements Post Midterm Feedback Form (< 5 mins) https://forms.gle/TFw1D1SbGRfxw2TB8 • Homework k 6: Baye yes’ s’ Nets s I (lead TA: Eli) • Due Fri 1 Nov at 11:59pm • Homework k 7: Baye yes’ s’ Nets s II (lead TA: Eli) • Due Mon 4 Nov at 11:59pm • Offi Office H Hours • Iris: s: Mon 10.00am-noon, RI 237 • Ja Jan-Wi Willem: m: Tue 1.40pm-2.40pm, DG 111 • Zh Zhaoqi qing: : Thu 9.00am-11.00am, HS 202 • El Eli: Fri 10.00am-noon, RY 207 Bayes’ Net Representation CS 4100: Artificial Intelligence Bayes’ Nets: Inference • A A di directed, d, acyclic graph ph, o , one n node p per r random v variable • A A co conditional al probab ability tab able (CP CPT) ) for each node de • A collection of distributions over X , one for each possible assignment to parent variables • Ba Bayes ’ ne nets implicitly enc ncode jo join int dis istrib ributio ions • As a product of local conditional distributions • To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together: Jan-Willem van de Meent, Northeastern University [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Example: Alarm Network Example: Alarm Network B P(B) E P(E) B P(B) E P(E) B E B E +b 0.001 +e 0.002 +b 0.001 +e 0.002 -b 0.999 -e 0.998 -b 0.999 -e 0.998 A A A J P(J|A) A M P(M|A) A J P(J|A) A M P(M|A) B E A P(A|B,E) B E A P(A|B,E) +a +j 0.9 +a +m 0.7 +a +j 0.9 +a +m 0.7 +b +e +a 0.95 +b +e +a 0.95 +a -j 0.1 +a -m 0.3 +a -j 0.1 +a -m 0.3 J M J M +b +e -a 0.05 +b +e -a 0.05 -a +j 0.05 -a +m 0.01 -a +j 0.05 -a +m 0.01 +b -e +a 0.94 +b -e +a 0.94 -a -j 0.95 -a -m 0.99 -a -j 0.95 -a -m 0.99 +b -e -a 0.06 +b -e -a 0.06 -b +e +a 0.29 -b +e +a 0.29 -b +e -a 0.71 -b +e -a 0.71 -b -e +a 0.001 -b -e +a 0.001 -b -e -a 0.999 -b -e -a 0.999 Example: Alarm Network Bayes’ Nets B P(B) E P(E) • Representation B E +b 0.001 +e 0.002 • Conditional Independences -b 0.999 -e 0.998 A • Probabilistic Inference A J P(J|A) A M P(M|A) B E A P(A|B,E) +a +j 0.9 +a +m 0.7 • Enumeration (exact, exponential +b +e +a 0.95 +a -j 0.1 +a -m 0.3 complexity) J M +b +e -a 0.05 -a +j 0.05 -a +m 0.01 • Variable elimination (exact, worst-case +b -e +a 0.94 -a -j 0.95 -a -m 0.99 exponential complexity, often better) +b -e -a 0.06 • Inference is NP-complete -b +e +a 0.29 -b +e -a 0.71 • Sampling (approximate) -b -e +a 0.001 -b -e -a 0.999 • Learning Bayes’ Nets from Data

  2. <latexit sha1_base64="QeIUGpwmkQOMpLFOW6kPQY/Mnw=">AHR3icfZXdbtMwFMe9Ad0oXxtchPRIQ0tGsk6uoGENG1M4ysQ+pqSYncduszgeO07Uzfgyehlu4BF4Cu4Ql9hJBkc5irt6fHv/H3sHNt2hL2YGsaPufkbN281FhZvN+/cvXf/wdLyw+M4TIiDjpwQh+TUhjHCXoCOqEcxOo0Igr6N0Yk93pP9JxNEYi8MPtBZhPo+HAbewHMgFa6zpefd1V3tk7Z2rmtr/jPtWYNCHSY8OpXTi7+XZna2VLWDfSpqmGmRutHZC17tlyA1hu6CQ+CqiDYRz3TCOifQYJ9RyMeNKYhRBZwyHqCfMAPo7rN0ZlxrNp8W+lmALqIpRVPKa/w+pCPeLOox6MeZt+IchAGNy14MhW48te2y8r9tA0ColM3z1PYmqHUy5TdNFArH+aM3NtnCDODg92OTP0Tls3N7Z4lSHIzRFz29DFRyGBKEgZ7Y3dbOzXQNFCYkw+kcZkpMZF6k3kIy7Oej4s7FIa73T0cW70o30abe5GrGbziLjzRy7j+UM7qSN1L1LOxFDbw3g0FZXD7mf+iDbCkKuRvXqr8jMBiYjaFCcvkxQIRJGrGCX0fBi6zJsjhPbPLBTECUGyZphlh9gVBSF+WMvknCtBWYiITfuFaLEXTSDmzNJF0AjR5YKW7Ewgm5MwxVuvaoGTHl5+AmbpoMWmZnCzBTmUmEuFWakMBaisGaOSRlMqkIfK0J0lOpUZXAFw+KAcms4WpWDyoiDChKNPGXtIRn6UK5nGCECaUjkoXLh0RH2fI/GLO/napQXB8l+quD7VcSkt+2zfa5Qjo2TktGWOVtlpZPGSWugsodVkMOiUJmG6aGjVQ2PxlqYGemwOm+rUFDVTfhBJO74yXsnX+3hCqcbyxbrbX2+83Wzsb+e2xCB6DJ2AVmGAL7IC3oAuOgAM+gy/gK/jW+N742fjV+J2h83N5zCNQagtzfwCgbJVC</latexit> Inference Inference by Enumeration in Bayes’ Net • Gi Given unlimited d time, inference in BNs Ns is easy B E • Exa Examples: s: • In Inference: calculating some • Na Naïve strategy: In Infer eren ence ce by en enumer erat ation useful quantity from a joint • Po Posterior probability probability distribution capital B means: compute for all values b A P ( B | + j, + m ) ∝ B P ( B, + j, + m ) • Most like kely explanation P ( B | + j, + m ) = P ( B, + j, + m ) J J M M X = P ( B, e, a, + j, + m ) P (+ j, + m ) e,a X = P ( B ) P ( e ) P ( a | B, e ) P (+ j | a ) P (+ m | a ) e,a = P ( B ) P (+ e ) P (+ a | B, + e ) P (+ j | + a ) P (+ m | + a ) + P ( B ) P (+ e ) P ( − a | B, + e ) P (+ j | − a ) P (+ m | − a ) P ( B ) P ( − e ) P (+ a | B, − e ) P (+ j | + a ) P (+ m | + a ) + P ( B ) P ( − e ) P ( − a | B, − e ) P (+ j | − a ) P (+ m | − a ) Inference by Enumeration Inference by Enumeration? We We want: • • Ge General l case: * Works ks fine with multiple qu query ry vari riabl bles, too oo • Ev Evidence vari riables: • Quer Qu ery* var variable: iable: All var Al variab ables es Hi Hidden vari riables: • St Step p 3: No Normaliz lize • St Step p 1: Se Select the • Step St p 2: Su Sum out H to get joint • entries consistent of Query and evidence with the evidence × 1 Z Inference by Enumeration vs. Variable Elimination Factor Zoo • Why is inference by enumeration so slow? • Id Idea: ea: inter erleav eave e joining an and mar arginal alizing! • You join up the whole joint distribution before • Called “ Va Variable Elimination ” you sum out the hidden variables • Still NP-hard, but usually much faster than inference by enumeration Go Goal: Let’s make a ta taxon onom omy of co conditional al probab ability tab ables es (we have seen most of these before) • First we’ll need some new notation: fa factors rs Factor Zoo II Factor Zoo I • Jo • Si Single conditional: P( P(Y | x) Joint dist stribution: P( P(X,Y) X,Y) T W P P(y | x) for fi • Entries P( • Entries P( fixed x , al all y P(x, x,y) for all x , y hot sun 0.4 T W P • Sums to 1 • Sums to 1 hot rain 0.1 cold sun 0.4 cold sun 0.2 cold rain 0.6 cold rain 0.3 • Se Selecte ted j d joint: t: P( P(x, x,Y) • A slice of the joint distribution • Entries P( P(x, x,y) for fixe xed x , al all y T W P • Fa Family of cond nditiona nals: P( P(Y | X) T W P • Sums to P(x) x) (usually not 1 ) cold sun 0.2 hot sun 0.8 • Multiple conditionals cold rain 0.3 • Entries P( P(y | x) for al all x , y hot rain 0.2 • Number of capitals = cold sun 0.4 • Sums to |X |X| (size of domain) number of dimensions in table cold rain 0.6

  3. Factor Zoo III Factor Zoo Summary • In In gen ener eral al, when en we e write e P( P(Y 1 … … Y N | | X 1 … … X M ) • Specified family: P( P( y y | X ) • Entries P( P(y | x) for fi fixed y , bu but for all x • This is a fa factor , a multi-dimensional array containing numbers ≥ 0 • Sums to … who knows! • Its values are P( P(y 1 … … y N | x | x 1 … … x M ) • Any assi assigned ed (=lower-case) X or Y is a dimension missing (selected) from the array T W P hot rain 0.2 cold rain 0.6 Example: Traffic Domain Inference by Enumeration: Procedural Outline • Track k all objects s (fa facto tors) • Ra Random Varia iable les • Initial factors s are lo local l CPTs s (one per node) +r 0.1 • R : Ra R -r 0.9 Raining • T : Traf Traffic +r 0.1 +r +t 0.8 +t +l 0.3 -r 0.9 +r -t 0.2 +t -l 0.7 • L : Late for class! ss! T +r +t 0.8 -r +t 0.1 -t +l 0.1 -r -t 0.9 -t -l 0.9 +r -t 0.2 • Any y kn known va values s are se selected -r +t 0.1 -r -t 0.9 • E.g. if we know , the initial factors are P ( L ) = ? L X = P ( r, t, L ) +r 0.1 +r +t 0.8 +t +l 0.3 +t +l 0.3 -r 0.9 +r -t 0.2 -t +l 0.1 r,t +t -l 0.7 -r +t 0.1 -t +l 0.1 X -r -t 0.9 = P ( r ) P ( t | r ) P ( L | t ) -t -l 0.9 • Pr Procedu dure: Jo Join all factors, el eliminat nate all hidden variables, normalize ze r,t Operation 1: Join Factors Example: Multiple Joins • First st basi sic operation: jo join inin ing fa facto tors • Combining factors: s: • Ju Just st like ke a database se join • Get all factors over the joining variable • Build a new factor over the union of the variables involved • Exa xample: Join on R R +r 0.1 +r +t 0.8 +r +t 0.08 R,T -r 0.9 +r -t 0.2 +r -t 0.02 -r +t 0.1 -r +t 0.09 T -r -t 0.9 -r -t 0.81 • Computation for each entry: y: pointwise products Example: Multiple Joins Operation 2: Eliminate • Second basi sic operation: marginaliza zation +r 0.1 • Take ke a factor and su sum out a va variable R -r 0.9 Join R Join T • Shrinks ks a factor to a smaller one +r +t 0.08 R, T, L • A pr +r -t 0.02 projection operation -r +t 0.09 T +r +t 0.8 R, T O(2^3) -r -t 0.81 • Exa O(2^2) xample: +r -t 0.2 -r +t 0.1 0.024 +r +t +l -r -t 0.9 0.056 +r +t -l L L 0.002 +r -t +l +r +t 0.08 0.018 +r -t -l +t 0.17 +r -t 0.02 +t +l 0.3 +t +l 0.3 0.027 -r +t +l -r +t 0.09 -t 0.83 +t -l 0.7 +t -l 0.7 0.063 -r +t -l -r -t 0.81 -t +l 0.1 -t +l 0.1 0.081 -r -t +l -t -l 0.9 -t -l 0.9 0.729 -r -t -l

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend