and 611 for small integer factorization sieving
play

and 611 + for small : Integer factorization Sieving 1 612 2 2 - PowerPoint PPT Presentation

and 611 + for small : Integer factorization Sieving 1 612 2 2 3 3 D. J. Bernstein 2 2 613 3 3 614 2 4 2 2 615 3 5 Thanks to: 5 5 616 2 2 2 7 6 2 3 617 University of Illinois at Chicago 7 7 618 2 3 8 2 2 2


  1. � and 611 + � for small � : Integer factorization Sieving 1 612 2 2 3 3 D. J. Bernstein 2 2 613 3 3 614 2 4 2 2 615 3 5 Thanks to: 5 5 616 2 2 2 7 6 2 3 617 University of Illinois at Chicago 7 7 618 2 3 8 2 2 2 619 NSF DMS–0140542 9 3 3 620 2 2 5 10 2 5 621 3 3 3 Alfred P. Sloan Foundation 11 622 2 12 2 2 3 623 7 13 624 2 2 2 2 3 14 2 7 625 5 5 5 5 15 3 5 626 2 16 2 2 2 2 627 3 17 628 2 2 18 2 3 3 629 19 630 2 3 3 5 7 20 2 2 5 631 etc.

  2. � ✂ ✁ � � and 611 + � for small � : rization Sieving Have complete facto � (611 + � ) for some 1 612 2 2 3 3 2 2 613 � 625 = 2 1 3 0 5 4 7 3 3 614 2 14 4 2 2 615 3 5 � 675 = 2 6 3 3 5 2 7 5 5 616 2 2 2 7 64 6 2 3 617 Illinois at Chicago � 686 = 2 1 3 1 5 2 7 7 7 618 2 3 75 8 2 2 2 619 DMS–0140542 9 3 3 620 2 2 5 10 2 5 621 3 3 3 Foundation 14 � 64 � 75 � 625 � 675 11 622 2 = 2 8 3 4 5 8 7 4 = (2 4 3 12 2 2 3 623 7 13 624 2 2 2 2 3 14 2 7 625 5 5 5 5 15 3 5 626 2 gcd 14 � 64 � 75 16 2 2 2 2 627 3 17 628 2 2 = 47. 18 2 3 3 629 19 630 2 3 3 5 7 611 = 47 � 13. 20 2 2 5 631 etc.

  3. ✁ � and 611 + � for small � : Sieving Have complete factorization of � (611 + � ) for some � ’s. 1 612 2 2 3 3 2 2 613 � 625 = 2 1 3 0 5 4 7 1 . 3 3 614 2 14 4 2 2 615 3 5 � 675 = 2 6 3 3 5 2 7 0 . 5 5 616 2 2 2 7 64 6 2 3 617 � 686 = 2 1 3 1 5 2 7 3 . 7 7 618 2 3 75 8 2 2 2 619 9 3 3 620 2 2 5 10 2 5 621 3 3 3 14 � 64 � 75 � 625 � 675 � 686 11 622 2 = 2 8 3 4 5 8 7 4 = (2 4 3 2 5 4 7 2 ) 2 . 12 2 2 3 623 7 13 624 2 2 2 2 3 14 2 7 625 5 5 5 5 2 4 3 2 5 4 7 2 ✂ 611 15 3 5 626 2 gcd 14 � 64 � 75 16 2 2 2 2 627 3 17 628 2 2 = 47. 18 2 3 3 629 19 630 2 3 3 5 7 611 = 47 � 13. 20 2 2 5 631 etc.

  4. � ✂ � � � � ✁ � � ✂ ✁ � ✂ ✁ � ✁ ✁ � � � � � for small � : 611 + Have complete factorization of Given and parameter � (611 + � ) for some � ’s. 2 2 3 3 1. Use powers of p � and � fo � 625 = 2 1 3 0 5 4 7 1 . 2 14 sieve + 3 5 � 675 = 2 6 3 3 5 2 7 0 . 2 2 2 7 64 2. Look for nonempt � 686 = 2 1 3 1 5 2 7 3 . 2 3 75 � ( � ) completely with + 2 2 5 � ( 3 3 3 14 � 64 � 75 � 625 � 675 � 686 and with + 2 = 2 8 3 4 5 8 7 4 = (2 4 3 2 5 4 7 2 ) 2 . 7 2 2 2 2 3 3. Compute gcd 5 5 5 5 2 4 3 2 5 4 7 2 ✂ 611 2 gcd 14 � 64 � 75 where = 3 2 2 = 47. 2 3 3 5 7 611 = 47 � 13.

  5. � � ✁ � � � ✁ � ✂ ✂ ✂ ✁ � ✁ ✁ � Have complete factorization of Given and parameter : � (611 + � ) for some � ’s. 1. Use powers of primes to � and � for 1 � 625 = 2 1 3 0 5 4 7 1 . 2 . 14 sieve + � 675 = 2 6 3 3 5 2 7 0 . 64 � ’s 2. Look for nonempty set of � 686 = 2 1 3 1 5 2 7 3 . 75 � ( � ) completely factored with + � ( � ) square. 14 � 64 � 75 � 625 � 675 � 686 and with + = 2 8 3 4 5 8 7 4 = (2 4 3 2 5 4 7 2 ) 2 . 3. Compute gcd 2 4 3 2 5 4 7 2 ✂ 611 gcd 14 � 64 � 75 � ( � ). where = + = 47. 611 = 47 � 13.

  6. ✂ ✁ ✁ � � � ✁ � ✁ � � � � � � � � � � ✂ � � � ✂ ✁ � � factorization of Given and parameter : This is the Q sieve � ’s. some 1. Use powers of primes to Same principles: � and � for 1 4 7 1 . 2 . sieve + Continued-fraction 2 7 0 . (Lehmer, Powers, � ’s 2. Look for nonempty set of 2 7 3 . Brillhart, Morrison). � ( � ) completely factored with + Linear sieve (Schro � ( � ) square. � 675 � 686 and with + Quadratic sieve (P 4 3 2 5 4 7 2 ) 2 . Number-field sieve 3. Compute gcd 2 4 3 2 5 4 7 2 ✂ 611 � ( � ). (Pollard, Buhler, Lenstra, where = + Pomerance, Adleman).

  7. � � ✁ � � ✂ ✂ � ✂ � � ✁ � ✁ ✁ Given and parameter : This is the Q sieve . 1. Use powers of primes to Same principles: � and � for 1 2 . sieve + Continued-fraction method (Lehmer, Powers, � ’s 2. Look for nonempty set of Brillhart, Morrison). � ( � ) completely factored with + Linear sieve (Schroeppel). � ( � ) square. and with + Quadratic sieve (Pomerance). Number-field sieve 3. Compute gcd � ( � ). (Pollard, Buhler, Lenstra, where = + Pomerance, Adleman).

  8. � ✂ ✂ � � � ✂ � � � � � � ✂ � � � � � � ✂ � � � � ✂ � � � ✂ ✂ � � � � ✂ � � � ✂ ✂ ✂ � � � ✁ ✁ � ✁ ✂ ✂ � � ✂ � � � ✁ � � � rameter : This is the Q sieve . Sieving speed of primes to Same principles: Handle sieving in � for 1 2 . sieve + 1 Continued-fraction method (Lehmer, Powers, sieve + + 1 � ’s nonempty set of Brillhart, Morrison). sieve + 2 + 1 completely factored Linear sieve (Schroeppel). etc. � ) square. + Quadratic sieve (Pomerance). Sieving + 1 + Number-field sieve using primes � ( � ). (Pollard, Buhler, Lenstra, + means finding, for Pomerance, Adleman). + 1 + 2 which ’s divide

  9. � � � � � ✂ � ✂ � � � ✂ � ✂ � � � ✂ ✂ � ✂ � � � � ✂ � � � ✂ ✂ � � � � � ✂ ✂ � � � This is the Q sieve . Sieving speed Same principles: Handle sieving in pieces: sieve + 1 + ; Continued-fraction method (Lehmer, Powers, sieve + + 1 + 2 ; Brillhart, Morrison). sieve + 2 + 1 + 3 ; Linear sieve (Schroeppel). etc. Quadratic sieve (Pomerance). Sieving + 1 + 2 + Number-field sieve using primes (Pollard, Buhler, Lenstra, means finding, for each Pomerance, Adleman). + 1 + 2 + , � . which ’s divide +

  10. ✂ � � ✂ � � � ✂ � � ✂ � � ✂ � � ✂ � � � � ✂ ✂ � � ✂ � ✂ � � ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ � ✂ � � ✂ � � � ✂ � � � � � ✂ � sieve . Sieving speed Consider all pairs ( � is a multiple where + Handle sieving in pieces: sieve + 1 + ; Easy to generate pairs Continued-fraction method ers, sieve + + 1 + 2 ; sorted by second comp ✂ 2), (614 ✂ 2), (616 rrison). sieve + 2 + 1 + 3 ; (612 ✂ 2), (612 ✂ 3), (615 (Schroeppel). etc. (620 ✂ 5), (620 ✂ 5), (616 (Pomerance). (615 Sieving + 1 + 2 + sieve using primes Sieving means listing Buhler, Lenstra, means finding, for each sorted by first comp Adleman). ✂ 2), (612 ✂ 3), (614 + 1 + 2 + , (612 � . ✂ 3), (615 ✂ 5), (616 which ’s divide + (615 ✂ 2), (618 ✂ 3), (620 (618

  11. � ✂ � ✂ � ✂ ✂ � � � � � � � � ✂ � � ✂ � � � ✂ � ✂ � ✂ � � ✂ � � � � � � � � � ✂ � ✂ � � ✂ Sieving speed Consider all pairs ( + ) � is a multiple of where + . Handle sieving in pieces: sieve + 1 + ; Easy to generate pairs sieve + + 1 + 2 ; sorted by second component: ✂ 2), (614 ✂ 2), (616 ✂ 2), (618 ✂ 2), sieve + 2 + 1 + 3 ; (612 ✂ 2), (612 ✂ 3), (615 ✂ 3), (618 ✂ 3), etc. (620 ✂ 5), (620 ✂ 5), (616 ✂ 7). (615 Sieving + 1 + 2 + using primes Sieving means listing pairs means finding, for each sorted by first component: ✂ 2), (612 ✂ 3), (614 ✂ 2), + 1 + 2 + , (612 � . ✂ 3), (615 ✂ 5), (616 ✂ 2), (616 ✂ 7), which ’s divide + (615 ✂ 2), (618 ✂ 3), (620 ✂ 2), (620 ✂ 5). (618

  12. � � � ✁ � � � ✂ � ✂ ✂ � � � ✂ � � � � � � ✂ � � ✂ ✂ � � � � ✂ ✂ � ✂ � � ✂ ✂ � � � ✂ � � � ✂ � � � ✂ � � � � ✂ � � ✂ � � � � ✂ � � � ✂ � � � (1) 1+ Consider all pairs ( + ) There are � is a multiple of where + . involving + 1 pieces: + ; Easy to generate pairs Sieving + 1 + � (1) seconds 1+ + 2 ; sorted by second component: takes ✂ 2), (614 ✂ 2), (616 ✂ 2), (618 ✂ 2), 1 + 3 ; (612 on RAM costing ✂ 2), (612 ✂ 3), (615 ✂ 3), (618 ✂ 3), (620 2-dimensional mesh ✂ 5), (620 ✂ 5), (616 ✂ 7). (615 0 + 2 + is much faster: Sieving means listing pairs on machine costing for each sorted by first component: Can do even better: ✂ 2), (612 ✂ 3), (614 ✂ 2), 2 + , (612 on machine costing � . ✂ 3), (615 ✂ 5), (616 ✂ 2), (616 ✂ 7), + (615 using “elliptic-curve ✂ 2), (618 ✂ 3), (620 ✂ 2), (620 ✂ 5). (618

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend