analog to digital compression
play

Analog-to-Digital Compression Oral PhD Exam Alon Kipnis Advisor: - PowerPoint PPT Presentation

Fundamental performance limits of Analog-to-Digital Compression Oral PhD Exam Alon Kipnis Advisor: Andrea Goldsmith 1 /32 Outline analog digital quantization 010010011001001000 sampling (lossy compression) 0100101010010001


  1. Fundamental performance limits of Analog-to-Digital Compression Oral PhD Exam Alon Kipnis Advisor: Andrea Goldsmith 1 /32

  2. Outline analog digital quantization 010010011001001000 sampling (lossy compression) 0100101010010001… Motivation — Factors affecting analog-to-digital conversion Main problem — Combined problem sampling and lossy compression Corollary — Optimal sampling under compression constraints Summary — Toward a unified spectral theory of analog signal processing and lossy compression 2 /32

  3. Motivation The analog-to-digital (A/D) conversion problem: A/D conversion 010010011001 001000010000 1000100111… information loss Challenges: 1) measure 2) minimize 3 /32

  4. Motivation: measuring information loss Minimal distortion in A/D: analog analog digital quantization 010010011001001 reconstruction sampling (lossy compression) 000010010101001 distortion A/D parameters 4 /32

  5. Background: Lossy Compression analog quantization digital sampling analog reconstruction (lossy compression) RT bitrate: 0 . . . 00 [bits/sec] R X ( t ) 0 . . . 01 . Enc . . 0 T . . . 1 . . . 11 The Source Coding Theorem [Shannon ‘48]: Shannon’s optimization over D ( R ) distortion-rate = = probability distributions function Theoretic lower bound for distortion in A/D Ignores effect of sampling 5 /32

  6. Background: The Sampling Theorem analog quantization digital sampling (lossy compression) f s > f Nyq , 2 f B The Sampling Theorem [Whittaker, Kotelinkov, Shannon]: X ( t ) f s ∗ t = t sinc( t ) Y [ n ] = X ( t/f s ) Ignores effect of quantization distortion f Nyq = 2 f B Shannon’s distortion-rate D ( R ) function sampling rate f s 6 /32

  7. Combined sampling and lossy compression optimal lossy analog digital sampling compression Minimal distortion under sampling and lossy compression distortion D ( f s , R ) u n ? l = i b m i t i t r f Nyq e a Shannon’s unlimited d t e sampling rate distortion-rate D ( R ) function sampling rate f s 7 /32

  8. Sampling under Bitrate Constraints f s > f Nyq , 2 f B The Sampling Theorem [Whittaker, Kotelinkov, Shannon] ∗ t t = X ( t ) Y [ n ] = X ( t/f s ) sinc( t ) “we are not interested in exact transmission when we have a continuous [amplitude] source, but only in transmission to within a given tolerance” [Shannon ’48] distortion D ( f s , R ) ? = f Nyq = 2 f B D ( R ) sampling rate f s Can we attain D(R) by sampling below Nyquist ? 8 /32

  9. Motivation — Summary distortion ? D ( f s , R ) u n l i b m i t i r t ? a e = f Nyq = 2 f B t d e unlimited D ( R ) sampling rate sampling rate f s 1) What is the minimal distortion in sampling and lossy compression? 2) Can we attain D(R) by sampling below Nyquist ? 9 /32

  10. Combined Sampling and Source Coding lossy compression reconstruction sampling f s Y [ · ] R b X ( t ) X ( t ) Dec Enc Z T ⇣ ⌘ 2 1 X ( t ) − b , D ( f s , R ) inf X ( t ) E dt T enc − dec ,T 0 Assumptions: is zero mean Gaussian stationary with PSD S X ( f ) X ( t ) S X ( f ) is unimodal S X ( f ) f Pointwise uniform sampling Y [ n ] = X ( n/f s ) 10 /32

  11. Special case I: Gaussian Distortion Rate Function f s Y [ · ] R b X ( t ) X ( t ) Dec Enc f s > f Nyq D ( f s , R ) = D ( R ) ⇒ ( [Pinsker ’54] Z ∞ D θ ( R ) = min { S X ( f ) , θ } d f , WF ( S X ) −∞ Z ∞ R θ = 1 log + [ S X ( f ) / θ ] d (water-filling) f 2 −∞ S X ( f ) S X ( f ) θ θ D ( R ) f f R 11 /32

  12. Special case II: MMSE in sub-Nyquist Sampling f s R Y [ · ] b X ( t ) X ( t ) Dec Enc R → ∞ D ( f s , R ) mmse ( X | Y ) mmse ( f s ) ⇒ = = MMSE in sub-Nyquist sampling [Chan & Donaldson ‘71, Matthews ’00] P S X ( f ) X S X ( f − f s k ) k S 2 X ( f − f s k ) e P S X | Y ( f ) = k ∈ Z k S X ( f − f s k ) S X ( f − f s ) S X ( f + f s ) f s f 12 /32

  13. Combined Sampling and Source Coding f s Y [ · ] R b X ( t ) X ( t ) Dec Enc Theorem*[K., Goldsmith, Eldar, Weissman ‘13] ⇣ ⌘ e D ( f s , R ) mmse ( f s ) + WF S X | Y = e S X | Y ( f ) Distortion due to sampling θ Distortion due to bitrate constraint f s f (*) A. Kipnis, A. J. Goldsmith, T. Weissman and Y. C. Eldar, ‘Rate-distortion function of sub- Nyquist sampled Gaussian sources corrupted by noise’, Allerton 2013 13 /32

  14. Example: Uniform PSD D ( f s , R ) vs f s ( R = 1) S X ( f ) D ( f s , R ) distortion mmse ( f s ) f f B D ( R ) f s f Nyq = 2 f B 14 /32

  15. Achievability Scheme f s Y [ · ] R b X ( t ) X ( t ) Enc Dec e R 1 X ∆ 1 [ · ] Enc e R 2 X ∆ 2 [ · ] e Enc estimator X ( · ) orthogonalizing . * Y [ · ] transformation E [ X ( t ) | Y [ · ]] . . R k e X ∆ k [ · ] Enc X R i ≤ R i ⇣ ⌘ e D ( f s , R ) = mmse ( f s ) S X | Y WF + (*) A. Kipnis, A. J. Goldsmith and Y. C. Eldar, ‘The distortion rate function of cyclostationary Gaussian processes’, (under review) 2016 15 /32

  16. Pre-Sampling Operation f s R b X ( t ) H ( f ) X ( t ) Dec Enc e S X | Y ( f ) e S X | Y ( f ) θ θ f s f s distortion without pre-sampling filter with pre-sampling filter H ( f ) ≡ 1 H ( f ) Linear pre-processing can reduce distortion D ( R ) f s 16 /32

  17. Optimal pre-Sampling Filter Theorem* [K., Goldsmith, Eldar, Weissman ’14] The optimal pre-sampling filter is (i) anti-aliasing (ii) maximizes passband energy H ? ( f ) H ? ( f ) S X ( f ) no aliasing S X ( f ) θ θ f s f s | H ? | 2 S X ⇣ ⌘ D ? ( f s , R ) = mmse ? ( f s ) + WF (*) A. Kipnis, A. J. Goldsmith, Y. C. Eldar and T. Weissman, ‘Distortion-Rate function of sub-Nyquist sampled Gaussian sources’, IEEE Trans. on Information Theory, January, 2016 17 /32

  18. Optimal pre-Sampling Filter Theorem* [K., Goldsmith, Eldar, Weissman ’14] The optimal pre-sampling filter is (i) anti-aliasing (ii) maximizes passband energy f s f s f s f s f f low-pass is optimal maximal aliasing-free set is optimal (*) A. Kipnis, A. J. Goldsmith, Y. C. Eldar and T. Weissman, ‘Distortion-Rate function of sub-Nyquist sampled Gaussian sources’, IEEE Trans. on Information Theory, January, 2016 18 /32

  19. Why anti-aliasing is optimal ? 0 , σ 2 0 , σ 2 � � � � X 1 ∼ N X 2 ∼ N 1 2 h 1 h 2 X 1 X 2 Y + = Question: { mmse ( X 1 | Y ) + mmse ( X 2 | Y ) } argmin ? = h 1 h 2 mmse ( X i | Y ) = E ( X i − E [ X i | Y ]) 2 f s f s f s f s ∗ 1 ( σ 1 > σ 2 ) h 1 = Answer: ∗ h 2 1 ( σ 1 < σ 2 ) = f 19 /32

  20. Critical Sub-Nyquist Sampling Rate S X ( f ) D ? ( R, f s ) vs f s (R is fixed) distortion f Nyq f R D ( R ) mmse ( f s ) f s θ θ θ f s f s f s Sub-Nyquist sampling achieves optimal distortion-rate performance f s ≥ f R D ? ( f s , R ) = D ( R ) 20 /32

  21. Critical Sub-Nyquist Sampling Rate Theorem* [K., Goldsmith, Eldar ’15] f s ≥ f R D ? ( f s , R ) = D ( R ) Alignment of degrees of freedom Extends Kotelnikov-Whittaker-Shannon sampling theorem: Incorporates lossy compression Valid when input signal is not band limited Holds under non-uniform sampling + θ f R (*) A. Kipnis, A. J. Goldsmith and Y. C. Eldar, ‘Sub-Nyquist sampling achieves optimal rate-distortion’, Information Theory Workshop (ITW), 2015 (+) A. Kipnis, A. J. Goldsmith and Y. C. Eldar, ‘Gaussian distortion-rate function under sub- Nyquist nonuniform sampling’, Allerton 2014 21 /32

  22. Critical Sub-Nyquist Sampling Rate critical sub-sampling ratio vs R f R f Nyq * 1 R 22 /32

  23. Summary Transforming analog signals to bits involves sampling and lossy compression Closed-form expression for the minimal distortion as a function of the sampling rate and bitrate Parts of the signal removed due to lossy compression can be removed at the sampling stage • Sub-Nyquist sampling is optimal under bitrate constraint 23 /32

  24. Future Work I Degrees of freedom alignment in other sampling models ? Example: compressed sensing Y ∈ R n X sampler { 0 , 1 } nR b X Dec Enc 24 /32

  25. Noisy Input Signal quantization analog (lossy compression) digital noise sampling η ( t ) sampler f s Y [ · ] R b X ( t ) X ( t ) + Dec Enc H(f) Theorem*[K. Goldsmith, Weissman, Eldar ’13] X ( f − f s k ) | H ( f − f s k ) | 2 k S 2 P e ∗ S X | Y ( f ) = k ( S X ( f − f s k ) + S η ( f − f s k )) | H ( f − f s k ) | 2 P θ f s (*) A. Kipnis, A. J. Goldsmith, T. Weissman and Y. C. Eldar, ‘Rate-distortion function of sub- Nyquist sampled Gaussian sources corrupted by noise’, Allerton 2013 25 /32

  26. Toward a Unified Spectral Theory of Processing Time Series Enc Dec Lossy compression e S X | Y ( f ) η ( t ) θ f s + H(f) Linear Sampling filtering Does not incorporate time-flow 26 /32

  27. Future Work II Incorporating time-flow and lossy compression Example: minimal distortion in causal estimation under bitrate constraint X ( t ) past future t [Kolmogorov ’56]: S X ( f ) “Since a function with a bounded spectrum is always singular in the sense of my work and the θ observation of such a function is not related … to the stationary flow f of new information, then the sense of this kind of argumentation does not remain completely clear” 27 /32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend