an axiomatic approach to time dependent shortest paths
play

An Axiomatic Approach to Time-Dependent Shortest Paths Christos - PowerPoint PPT Presentation

An Axiomatic Approach to Time-Dependent Shortest Paths Christos Zaroliagis zaro@ceid.upatras.gr Dept. of Computer Engineering & Informatics Computer Technology Institute & Press University of Patras, Greece Diophantus 1 / 36


  1. Complexity of TDSP D : FIFO, piecewise-linear functions; K : total # of breakpoints Given od − pair and departure time t o from o : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)] Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009] Complexity of computing succinct representations ? ◮ Open till recently ... (log( n )) ) space [Foschini-Hershberger-Suri (2011)] ◮ Arr [ o , d ] : O (( K + 1 ) · n Θ 7 / 36

  2. Exact Succinct Representation Why so high complexity ? t 2 t 2 t ′ t ′ 2 2 t t t Arr [ o - u - d ] Arr [ o , d ] Arr [ o - v - d ] A [ s - u - d ] A [ s, d ] A [ s - v - d ] d d t 2 t ′ t ′ 2 u v 1 t 1 u v o t 1 t s t t ′ 1 Arr [ ud ] Arr [ ou ] Arr [ vd ] A [ u - d ] A [ s - u ] Arr [ ov ] A [ s - v ] A [ v - d ] Primitive Breakpoint (PB) Departure-time b xy from x at which Arr [ xy ] changes slope 8 / 36

  3. Exact Succinct Representation Why so high complexity ? t 2 t 2 t ′ t ′ 2 2 t t t Arr [ o - u - d ] Arr [ o , d ] Arr [ o - v - d ] A [ s - u - d ] A [ s, d ] A [ s - v - d ] d d t 2 t ′ t ′ 2 u v 1 t 1 u v o t 1 t s t t ′ 1 Arr [ ud ] Arr [ ou ] Arr [ vd ] A [ u - d ] A [ s - u ] Arr [ ov ] A [ s - v ] A [ v - d ] Primitive Breakpoint (PB) Departure-time b xy from x at which Arr [ xy ] changes slope Minimization Breakpoint (MB) Departure-time b x from o s.t. Arr [ o , x ] changes slope due to min operator at x 8 / 36

  4. Complexity of TDSP D : FIFO, piecewise-linear functions; K : total # of breakpoints Given od − pair and departure time t o from o : time-dependent Dijkstra [Dreyfus (1969), Orda-Rom (1990)] Time-dependent shortest path heuristics: only empirical evidence [Delling & Wagner 2009; Batz etal, 2009] Complexity of computing succinct representations ? ◮ Open till recently ... ◮ Arr [ o , d ] : O (( K + 1 ) · n Θ (log( n )) ) space [Foschini-Hershberger-Suri (2011)] ◮ D [ o , d ] : O ( K + 1 ) space for point-to-point ( 1 + ε ) − approximation [Dehne-Omran-Sack (2010), Foschini-Hershberger-Suri (2011)] 9 / 36

  5. Complexity of TDSP D : FIFO, piecewise-linear functions; K : total # of breakpoints Question 1 : ∃ data structure ( oracle ) that ◮ requires reasonable space ? ◮ allows answering distance queries efficiently ? 10 / 36

  6. Complexity of TDSP D : FIFO, piecewise-linear functions; K : total # of breakpoints Question 1 : ∃ data structure ( oracle ) that ◮ requires reasonable space ? ◮ allows answering distance queries efficiently ? Trivial solution I: Precompute all ( 1 + ε ) − approximate distance summaries for every od -pair � � n 2 ( K + 1 ) O space O (log log( K )) query time ( 1 + ε ) − stretch 10 / 36

  7. Complexity of TDSP D : FIFO, piecewise-linear functions; K : total # of breakpoints Question 1 : ∃ data structure ( oracle ) that ◮ requires reasonable space ? ◮ allows answering distance queries efficiently ? Trivial solution I: Precompute all ( 1 + ε ) − approximate distance summaries for every od -pair � � n 2 ( K + 1 ) O space O (log log( K )) query time ( 1 + ε ) − stretch Trivial solution II: No preprocessing, respond to queries with TD-Dijkstra O ( n + m + K ) space O ([ m + n log( n )] · log log( K )) query time 1 − stretch 10 / 36

  8. Complexity of TDSP D : FIFO, piecewise-linear functions; K : total # of breakpoints Question 1 : ∃ data structure ( oracle ) that ◮ requires reasonable space ? ◮ allows answering distance queries efficiently ? Trivial solution I: Precompute all ( 1 + ε ) − approximate distance summaries for every od -pair � � n 2 ( K + 1 ) O space O (log log( K )) query time ( 1 + ε ) − stretch Trivial solution II: No preprocessing, respond to queries with TD-Dijkstra O ( n + m + K ) space O ([ m + n log( n )] · log log( K )) query time 1 − stretch Question 2 : can we do better ? ◮ subquadratic space & sublinear query time ◮ ∃ smooth tradeoff among space / query time / stretch ? 10 / 36

  9. Towards Time-Dependent Distance Oracles Generic Framework for Static Landmark-based Oracles Choose a set L ⊂ V of landmarks 1 ∀ ℓ ∈ L , compute distance summaries from ℓ to all v ∈ V 2 Employ a query algorithm that uses the pre-computed distance 3 summaries to answer arbitrary ( o , d ) distance queries 11 / 36

  10. Towards Time-Dependent Distance Oracles An Axiomatic Approach – Network Properties Q Static & undirected world −→ time-dependent & directed world ? 12 / 36

  11. Towards Time-Dependent Distance Oracles An Axiomatic Approach – Network Properties Q Static & undirected world −→ time-dependent & directed world ? Property 1 (bounded travel time slopes) Slopes of D [ o , d ] ∈ [ − 1 , Λ max ] , for some constant Λ max > 0 12 / 36

  12. Towards Time-Dependent Distance Oracles An Axiomatic Approach – Network Properties Q Static & undirected world −→ time-dependent & directed world ? Property 1 (bounded travel time slopes) Slopes of D [ o , d ] ∈ [ − 1 , Λ max ] , for some constant Λ max > 0 Property 2 (bounded opposite trips) ∃ ζ ≥ 1 : ∀ ( o , d ) ∈ V × V , ∀ t ∈ [ 0 , T ] , D [ o , d ]( t ) ≤ ζ · D [ d , o ]( t ) 12 / 36

  13. Towards Time-Dependent Distance Oracles An Axiomatic Approach – Network Properties Q Static & undirected world −→ time-dependent & directed world ? Property 1 (bounded travel time slopes) Slopes of D [ o , d ] ∈ [ − 1 , Λ max ] , for some constant Λ max > 0 Property 2 (bounded opposite trips) ∃ ζ ≥ 1 : ∀ ( o , d ) ∈ V × V , ∀ t ∈ [ 0 , T ] , D [ o , d ]( t ) ≤ ζ · D [ d , o ]( t ) Property 3 (Dij.Rank and TD time are within polynomial factors) ∃ λ, c 1 , c 2 ∈ O ( 1 ) , f ( n ) ≤ log c 1 ( n ) , g ( n ) ≤ c 2 log( n ) : Γ[ o , d ]( t o ) ≤ f ( n ) · ( D [ o , d ]( t o )) λ and D [ o , d ]( t o ) ≤ g ( n ) · (Γ[ o , d ]( t o )) 1 /λ 12 / 36

  14. Towards Time-Dependent Distance Oracles An Axiomatic Approach – Network Properties Q Static & undirected world −→ time-dependent & directed world ? Property 1 (bounded travel time slopes) Slopes of D [ o , d ] ∈ [ − 1 , Λ max ] , for some constant Λ max > 0 Property 2 (bounded opposite trips) ∃ ζ ≥ 1 : ∀ ( o , d ) ∈ V × V , ∀ t ∈ [ 0 , T ] , D [ o , d ]( t ) ≤ ζ · D [ d , o ]( t ) Property 3 (Dij.Rank and TD time are within polynomial factors) ∃ λ, c 1 , c 2 ∈ O ( 1 ) , f ( n ) ≤ log c 1 ( n ) , g ( n ) ≤ c 2 log( n ) : Γ[ o , d ]( t o ) ≤ f ( n ) · ( D [ o , d ]( t o )) λ and D [ o , d ]( t o ) ≤ g ( n ) · (Γ[ o , d ]( t o )) 1 /λ Property 4 (no. of arcs linear in no. of vertices) m = O ( n ) 12 / 36

  15. Towards Time-Dependent Distance Oracles An Axiomatic Approach – Network Properties Validation of Properties Λ max Data Set Type (source) n m ζ max λ Berlin real (TomTom) 480 K 1135 K 0.19 1.19 [1.3,1.6] Germany real (PTV) 4690 K 11183 K 0.22 1.05 [1.4,1.7] WEurope bench. (PTV) 18010 K 42188 K 3.60 1.13 [1.4,1.7] 13 / 36

  16. First Efficient Time-Dependent Distance Oracle [Kontogiannis & Zaroliagis, 2014] Choose a set L of landmarks 1 14 / 36

  17. First Efficient Time-Dependent Distance Oracle [Kontogiannis & Zaroliagis, 2014] Choose a set L of landmarks 1 ∀ ( ℓ, v ) ∈ L × V , compute distance summaries ∆[ ℓ, v ] , 2 D [ ℓ, v ] ≤ ∆[ ℓ, v ] ≤ ( 1 + ε ) · D [ ℓ, v ] ◮ BIS (bisection-based) approach, one-to-all ( 1 + ε ) -approximation 14 / 36

  18. First Efficient Time-Dependent Distance Oracle [Kontogiannis & Zaroliagis, 2014] Choose a set L of landmarks 1 ∀ ( ℓ, v ) ∈ L × V , compute distance summaries ∆[ ℓ, v ] , 2 D [ ℓ, v ] ≤ ∆[ ℓ, v ] ≤ ( 1 + ε ) · D [ ℓ, v ] ◮ BIS (bisection-based) approach, one-to-all ( 1 + ε ) -approximation Answer arbitrary queries ( o , d , t o ) using FCA & RQA query 3 algorithms 14 / 36

  19. First Efficient Time-Dependent Distance Oracle [Kontogiannis & Zaroliagis, 2014] Choose a set L of landmarks 1 ∀ ( ℓ, v ) ∈ L × V , compute distance summaries ∆[ ℓ, v ] , 2 D [ ℓ, v ] ≤ ∆[ ℓ, v ] ≤ ( 1 + ε ) · D [ ℓ, v ] ◮ BIS (bisection-based) approach, one-to-all ( 1 + ε ) -approximation Answer arbitrary queries ( o , d , t o ) using FCA & RQA query 3 algorithms Time Stretch O ( K ∗ · n 2 − β + o ( 1 ) ) Preprocessing O ( n δ ) 1 + ε + ψ FCA ( ε/ψ ) r + 1 ( 1 ) ) O ( n δ + o 1 + ε · RQA ( ε/ψ ) r + 1 − 1 K ∗ : concavity spoiling breakpoints (0 ≤ K ∗ ≤ K ) β, δ ∈ ( 0 , 1 ) ; ψ = O ( 1 ) depends on network characteristics r = O ( 1 ) : recursion depth (budget) 14 / 36

  20. Approximating Distance Functions via Bisection sample simultaneously all distance values from o , at mid-points of time intervals, until required approximation guarantee is achieved ∀ destinations D 0 D 1 t 0 t 1 Example of Bisection Execution : INPUT = UNKNOWN BLUE function 15 / 36

  21. Approximating Distance Functions via Bisection sample simultaneously all distance values from o , at mid-points of time intervals, until required approximation guarantee is achieved ∀ destinations D 0 D 1 t 0 t 1 Example of Bisection Execution : ORANGE = Upper Bound, YELLOW = Lower Bound 15 / 36

  22. Approximating Distance Functions via Bisection sample simultaneously all distance values from o , at mid-points of time intervals, until required approximation guarantee is achieved ∀ destinations D 2 D 0 D 1 t 2 t 0 t 1 Example of Bisection Execution : Level-1 Recursion 15 / 36

  23. Approximating Distance Functions via Bisection sample simultaneously all distance values from o , at mid-points of time intervals, until required approximation guarantee is achieved ∀ destinations D 2 D 3 D 0 D 1 t 3 t 2 t 0 t 1 Example of Bisection Execution : Level-2 Recursion 15 / 36

  24. Approximating Distance Functions via Bisection For continuous, pwl arc-delays Run Reverse TD-Dijkstra to 1 project each earliest-arrival times at v = head [ uv ] concavity-spoiling PB to a PI of the origin o For each pair of consecutive 2 PIs at o , run BIS for the corresponding 0 t 1 t 2 t 3 t 4 t 5 T departure time from u = tail [ uv ] departure-times interval Return the concatenation of approximate distance summaries 3 16 / 36

  25. Landmark Selection and Preprocessing K ∗ ( < K ) : total # of concavity-spoiling breakpoints; Landmark selection: ∀ v ∈ V , Pr[ v ∈ L ] = ρ ∈ ( 0 , 1 ) , | L | = ρ · n [correctness is independent of the landmark selection] Preprocessing: ∀ ℓ ∈ L , compute ( 1 + ε ) − approximate distance functions ∆[ ℓ, v ] to all v ∈ V using BIS 17 / 36

  26. Landmark Selection and Preprocessing K ∗ ( < K ) : total # of concavity-spoiling breakpoints; Landmark selection: ∀ v ∈ V , Pr[ v ∈ L ] = ρ ∈ ( 0 , 1 ) , | L | = ρ · n [correctness is independent of the landmark selection] Preprocessing: ∀ ℓ ∈ L , compute ( 1 + ε ) − approximate distance functions ∆[ ℓ, v ] to all v ∈ V using BIS Preprocessing complexity ( ρ = n − β ) 17 / 36

  27. Landmark Selection and Preprocessing K ∗ ( < K ) : total # of concavity-spoiling breakpoints; Landmark selection: ∀ v ∈ V , Pr[ v ∈ L ] = ρ ∈ ( 0 , 1 ) , | L | = ρ · n [correctness is independent of the landmark selection] Preprocessing: ∀ ℓ ∈ L , compute ( 1 + ε ) − approximate distance functions ∆[ ℓ, v ] to all v ∈ V using BIS Preprocessing complexity ( ρ = n − β ) Space ( K ∗ + 1 ) · | L | · n · 1 K ∗ · n 2 − β + o ( 1 ) � � � � O ε · log( n /ε ) = O 17 / 36

  28. Landmark Selection and Preprocessing K ∗ ( < K ) : total # of concavity-spoiling breakpoints; Landmark selection: ∀ v ∈ V , Pr[ v ∈ L ] = ρ ∈ ( 0 , 1 ) , | L | = ρ · n [correctness is independent of the landmark selection] Preprocessing: ∀ ℓ ∈ L , compute ( 1 + ε ) − approximate distance functions ∆[ ℓ, v ] to all v ∈ V using BIS Preprocessing complexity ( ρ = n − β ) Space ( K ∗ + 1 ) · | L | · n · 1 K ∗ · n 2 − β + o ( 1 ) � � � � O ε · log( n /ε ) = O Time � | L | · K ∗ � � K ∗ · n 2 − β + o ( 1 ) � ε log 2 ( n ε ) · n log n = O O 17 / 36

  29. FCA: constant-approximation query algorithm [Kontogiannis & Zaroliagis, 2014] Π ASP[ l o , d ]( t o + R o ) l o Q SP[ o , l o ]( t o ) P SP[ o , d ]( t o ) t o d w x o t d = t o + D[ o , d ]( t o ) R o return sol o = D [ o , ℓ o ]( t o ) + ∆[ ℓ o , d ]( t o + D [ o , ℓ o ]( t o )) 18 / 36

  30. FCA: constant-approximation query algorithm [Kontogiannis & Zaroliagis, 2014] Π ASP[ l o , d ]( t o + R o ) l o Q SP[ o , l o ]( t o ) P SP[ o , d ]( t o ) t o d w x o t d = t o + D[ o , d ]( t o ) R o return sol o = D [ o , ℓ o ]( t o ) + ∆[ ℓ o , d ]( t o + D [ o , ℓ o ]( t o )) FCA complexity 18 / 36

  31. FCA: constant-approximation query algorithm [Kontogiannis & Zaroliagis, 2014] Π ASP[ l o , d ]( t o + R o ) l o Q SP[ o , l o ]( t o ) P SP[ o , d ]( t o ) t o d w x o t d = t o + D[ o , d ]( t o ) R o return sol o = D [ o , ℓ o ]( t o ) + ∆[ ℓ o , d ]( t o + D [ o , ℓ o ]( t o )) FCA complexity Approximation guarantee: ≤ ( 1 + ε + ψ ) · D [ o , d ]( t o ) ψ = 1 + Λ max ( 1 + ε )( 1 + 2 ζ + Λ max ζ ) + ( 1 + ε ) ζ 18 / 36

  32. FCA: constant-approximation query algorithm [Kontogiannis & Zaroliagis, 2014] Π ASP[ l o , d ]( t o + R o ) l o Q SP[ o , l o ]( t o ) P SP[ o , d ]( t o ) t o d w x o t d = t o + D[ o , d ]( t o ) R o return sol o = D [ o , ℓ o ]( t o ) + ∆[ ℓ o , d ]( t o + D [ o , ℓ o ]( t o )) FCA complexity Approximation guarantee: ≤ ( 1 + ε + ψ ) · D [ o , d ]( t o ) ψ = 1 + Λ max ( 1 + ε )( 1 + 2 ζ + Λ max ζ ) + ( 1 + ε ) ζ Query-time: O ( n δ ) (0 < δ < 1) 18 / 36

  33. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] 19 / 36

  34. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t o o d 19 / 36

  35. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 w 2 Growing level-0 ball... t 1 t o o d w 1 t 3 w 3 l o 19 / 36

  36. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 w 2 l 1 Growing level-0 ball... t 1 t o Growing level-1 balls... o d w 1 t 4 w 4 t 3 w 3 l o 19 / 36

  37. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 l 2 w 2 l 1 Growing level-0 ball... t 1 t o Growing level-1 balls... o d w 1 t 4 w 4 t 3 w 3 l o 19 / 36

  38. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 l 2 w 2 l 1 Growing level-0 ball... t 1 t o Growing level-1 balls... o d w 1 t 4 w 4 t 3 w 3 l o l 3 19 / 36

  39. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 l 2 Growing level-0 ball... w 2 l 1 Growing level-1 balls... t 1 t o o d w 1 Growing level-2 balls... t 4 w 4 t 3 l 4 l o w 3 l 3 19 / 36

  40. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 l 2 Growing level-0 ball... w 2 l 1 Growing level-1 balls... t 1 t o o d w 1 Growing level-2 balls... t 4 w 4 ... until recursion t 3 l 4 l o w 3 budget r is exhausted l 3 return best among sol i = D [ o , w i ]( t o ) + D [ w i , ℓ i ]( t i ) + ∆[ ℓ i , d ]( t i + D [ w i , ℓ i ]( t i )) 19 / 36

  41. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 l 2 Growing level-0 ball... w 2 l 1 Growing level-1 balls... t 1 t o o d w 1 Growing level-2 balls... t 4 w 4 ... until recursion t 3 l 4 l o w 3 budget r is exhausted l 3 return best among sol i = D [ o , w i ]( t o ) + D [ w i , ℓ i ]( t i ) + ∆[ ℓ i , d ]( t i + D [ w i , ℓ i ]( t i )) RQA Complexity 19 / 36

  42. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 l 2 Growing level-0 ball... w 2 l 1 Growing level-1 balls... t 1 t o o d w 1 Growing level-2 balls... t 4 w 4 ... until recursion t 3 l 4 l o w 3 budget r is exhausted l 3 return best among sol i = D [ o , w i ]( t o ) + D [ w i , ℓ i ]( t i ) + ∆[ ℓ i , d ]( t i + D [ w i , ℓ i ]( t i )) RQA Complexity ( 1 + ε/ψ ) r + 1 Approximation guarantee: 1 + σ = 1 + ε · ( 1 + ε/ψ ) r + 1 − 1 19 / 36

  43. RQA: Boosting the Approximation Guarantee – PTAS [Kontogiannis & Zaroliagis, 2014] t 2 l 2 Growing level-0 ball... w 2 l 1 Growing level-1 balls... t 1 t o o d w 1 Growing level-2 balls... t 4 w 4 ... until recursion t 3 l 4 l o w 3 budget r is exhausted l 3 return best among sol i = D [ o , w i ]( t o ) + D [ w i , ℓ i ]( t i ) + ∆[ ℓ i , d ]( t i + D [ w i , ℓ i ]( t i )) RQA Complexity ( 1 + ε/ψ ) r + 1 Approximation guarantee: 1 + σ = 1 + ε · ( 1 + ε/ψ ) r + 1 − 1 Query-time: O ( n δ + o ( 1 ) ) ; 0 < δ < 1 19 / 36

  44. Towards More Efficient Time-Dependent Oracles Previous TD oracle efficient only when K ∗ ∈ o ( n ) 20 / 36

  45. Towards More Efficient Time-Dependent Oracles Previous TD oracle efficient only when K ∗ ∈ o ( n ) Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ( n ) (!) 20 / 36

  46. Towards More Efficient Time-Dependent Oracles Previous TD oracle efficient only when K ∗ ∈ o ( n ) Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ( n ) (!) ⇓ 20 / 36

  47. Towards More Efficient Time-Dependent Oracles Previous TD oracle efficient only when K ∗ ∈ o ( n ) Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ( n ) (!) ⇓ Space blow-up 20 / 36

  48. Towards More Efficient Time-Dependent Oracles Previous TD oracle efficient only when K ∗ ∈ o ( n ) Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ( n ) (!) ⇓ Space blow-up Can we avoid dependence on K ∗ and still maintain 20 / 36

  49. Towards More Efficient Time-Dependent Oracles Previous TD oracle efficient only when K ∗ ∈ o ( n ) Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ( n ) (!) ⇓ Space blow-up Can we avoid dependence on K ∗ and still maintain ◮ Subquadratic preprocessing ? 20 / 36

  50. Towards More Efficient Time-Dependent Oracles Previous TD oracle efficient only when K ∗ ∈ o ( n ) Experimental analysis in Berlin [KMPPWZ, 2015] : K ∗ ∈ Θ( n ) (!) ⇓ Space blow-up Can we avoid dependence on K ∗ and still maintain ◮ Subquadratic preprocessing ? ◮ Sublinear query time (also on Dijkstra rank) ? 20 / 36

  51. TRAP: New Approximation Method T ≤ n α (0 < α < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016] D m [ l , v ]( t s , t f ) Slope: -Λ min Slope: Λ max D[ l , v ]( t f ) Max Abs Error D[ l , v ]( t s ) shortest travel time at v shortest travel time at v Slope: Λ max Slope: -Λ min D m [ l , v ]( t s , t f ) t s t m t m t f departure time from landmark Trapezoidal Approximation � T � Split [ 0 , T ) into length- τ subintervals, for a suitable choice of τ τ Compute ( 1 + ε ) -upper approximation per subinterval ∆[ ℓ, v ] (of D [ o , d ] : [ 0 , T ) �→ R > 0 ): concatenation of all upper approximations per subinterval 21 / 36

  52. TRAP: New Approximation Method T ≤ n α (0 < α < 1): period; [Kontogiannis, Wagner & Zaroliagis, 2016] D m [ l , v ]( t s , t f ) Slope: -Λ min Slope: Λ max D[ l , v ]( t f ) Max Abs Error D[ l , v ]( t s ) shortest travel time at v shortest travel time at v Slope: Λ max Slope: -Λ min D m [ l , v ]( t s , t f ) t s t m t m t f departure time from landmark Trapezoidal Approximation � T � Split [ 0 , T ) into length- τ subintervals, for a suitable choice of τ τ Compute ( 1 + ε ) -upper approximation per subinterval ∆[ ℓ, v ] (of D [ o , d ] : [ 0 , T ) �→ R > 0 ): concatenation of all upper approximations per subinterval TRAP Complexity O ( n α ) TDSP-Calls 21 / 36

  53. BIS vs TRAP Approximation Methods BIS TRAP earliest-arrival times at v = head [ uv ] 0 t 1 t 2 t 3 t 4 t 5 T departure time from u = tail [ uv ] BIS (+) BIS (-) Simplicity Linear depen- Space- dence on degree optimal for of disconcavity K ∗ concave func- tions First one-to- all approximation 22 / 36

  54. BIS vs TRAP Approximation Methods BIS TRAP D m [ l , v ]( t s , t f ) earliest-arrival times at v = head [ uv ] Slope: -Λ min Slope: Λ max D[ l , v ]( t f ) Max Abs Error D[ l , v ]( t s ) shortest travel time at v shortest travel time at v Slope: Λ max Slope: -Λ min D m [ l , v ]( t s , t f ) 0 t 1 t 2 t 3 t 4 t 5 T t s t m t m t f departure time from u = tail [ uv ] departure time from landmark Trapezoidal Approximation TRAP (+) TRAP (-) BIS (+) BIS (-) Simplicity. No guaran- Simplicity Linear depen- One-to-all tee of space- Space- dence on degree approximation optimality optimal for of disconcavity K ∗ Indepen- Inappropriate concave func- dence from for “nearby” tions K ∗ vertices around First one-to- o all approximation 22 / 36

  55. TRAPONLY Oracle [Kontogiannis, Wagner & Zaroliagis, 2016] Preprocessing Compute distance summaries from ∀ ℓ ∈ L to all v ∈ V using TRAP (guarantees ( 1 + ε ) -approximate distances to “faraway” vertices) 23 / 36

  56. TRAPONLY Oracle [Kontogiannis, Wagner & Zaroliagis, 2016] Preprocessing Compute distance summaries from ∀ ℓ ∈ L to all v ∈ V using TRAP (guarantees ( 1 + ε ) -approximate distances to “faraway” vertices) Query Algorithm RQA+ 23 / 36

  57. TRAPONLY Oracle [Kontogiannis, Wagner & Zaroliagis, 2016] Preprocessing Compute distance summaries from ∀ ℓ ∈ L to all v ∈ V using TRAP (guarantees ( 1 + ε ) -approximate distances to “faraway” vertices) Query Algorithm RQA+ ◮ Similar to RQA, but in addition ... 23 / 36

  58. TRAPONLY Oracle [Kontogiannis, Wagner & Zaroliagis, 2016] Preprocessing Compute distance summaries from ∀ ℓ ∈ L to all v ∈ V using TRAP (guarantees ( 1 + ε ) -approximate distances to “faraway” vertices) Query Algorithm RQA+ ◮ Similar to RQA, but in addition ... ◮ for every ℓ ∈ L discovered by RQA, grow a TD-Dijkstra ball of appropriate size to compute distances to “nearby” vertices 23 / 36

  59. FLAT Oracle [Kontogiannis, Wagner & Zaroliagis, 2016] Preprocessing compute distance summaries from ℓ ∈ L to all v ∈ V using TRAP (BIS) for “faraway” (“nearby”) vertices Query Algorithms Query: FCA, RQA, FCA+(N) FCA+(N) Run FCA until N landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees t o o d 24 / 36

  60. FLAT Oracle [Kontogiannis, Wagner & Zaroliagis, 2016] Preprocessing compute distance summaries from ℓ ∈ L to all v ∈ V using TRAP (BIS) for “faraway” (“nearby”) vertices Query Algorithms Query: FCA, RQA, FCA+(N) FCA+(N) Run FCA until N landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees t o R 0 o d l o 24 / 36

  61. FLAT Oracle [Kontogiannis, Wagner & Zaroliagis, 2016] Preprocessing compute distance summaries from ℓ ∈ L to all v ∈ V using TRAP (BIS) for “faraway” (“nearby”) vertices Query Algorithms Query: FCA, RQA, FCA+(N) FCA+(N) Run FCA until N landmarks are settled. Theory: no better than FCA; practice: remarkable stretch guarantees l 2 l 1 R 2 R 1 t o o d R 0 l o R 4 R 3 l 4 l 3 24 / 36

  62. HORN ( H ierarchical OR acle for TD N etworks) Idea – [Kontogiannis, Wagner & Zaroliagis, 2016] 25 / 36

  63. HORN ( H ierarchical OR acle for TD N etworks) Idea – [Kontogiannis, Wagner & Zaroliagis, 2016] Selection of landmark sets (colors indicate coverage sizes) 25 / 36

  64. HORN ( H ierarchical OR acle for TD N etworks) Idea – [Kontogiannis, Wagner & Zaroliagis, 2016] Selection of landmark sets (colors indicate coverage sizes) Small-coverage landmarks “learn” travel-time functions to their (only short-range) destinations 25 / 36

  65. HORN ( H ierarchical OR acle for TD N etworks) Idea – [Kontogiannis, Wagner & Zaroliagis, 2016] Selection of landmark sets (colors indicate coverage sizes) Small-coverage landmarks “learn” travel-time functions to their (only short-range) destinations Medium-coverage landmarks “learn” travel-time functions to their (up to medium-range) destinations . . . 25 / 36

  66. HORN ( H ierarchical OR acle for TD N etworks) Idea – [Kontogiannis, Wagner & Zaroliagis, 2016] Selection of landmark sets (colors indicate coverage sizes) Small-coverage landmarks “learn” travel-time functions to their (only short-range) destinations Medium-coverage landmarks “learn” travel-time functions to their (up to medium-range) destinations . . . Global-coverage landmarks “learn” travel-time functions to their (up to long-range) destinations 25 / 36

  67. HORN ( H ierarchical OR acle for TD N etworks) Idea 26 / 36

  68. HORN ( H ierarchical OR acle for TD N etworks) Preprocessing Depending on its level, each landmark has its own coverage , a given-size set of surrounding vertices for which it is informed Exponentially decreasing sequence of landmark set sizes Exponentially increasing sequence of coverages per landmark O (log log( n )) levels ⇒ Subquadratic preprocessing space/time ∴ 27 / 36

  69. HORN ( H ierarchical OR acle for TD N etworks) Preprocessing Depending on its level, each landmark has its own coverage , a given-size set of surrounding vertices for which it is informed Exponentially decreasing sequence of landmark set sizes Exponentially increasing sequence of coverages per landmark O (log log( n )) levels ⇒ Subquadratic preprocessing space/time ∴ HORN Preprocessing Complexity Appropriate construction of the hierarchy ensures subquadratic � n 2 − β + o ( 1 ) � preprocessing space and time O ; β ∈ ( 0 , 1 ) 27 / 36

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend