an algebraic birkhoff decomposition for the continuous
play

An algebraic Birkhoff decomposition for the continuous - PowerPoint PPT Presentation

An algebraic Birkhoff decomposition for the continuous renormalization group P. Martinetti Universit` a di Roma Tor Vergata and CMTP eminaire CALIN, LIPN Paris 13, 8 th February 2011 S What is the algebraic (geometric) structure underlying


  1. An algebraic Birkhoff decomposition for the continuous renormalization group P. Martinetti Universit` a di Roma Tor Vergata and CMTP eminaire CALIN, LIPN Paris 13, 8 th February 2011 S´

  2. What is the algebraic (geometric) structure underlying renormalization? ◮ Perturbative renormalization in qft is a Birkhoff decomposition → Hopf algebra of Feynman diagrams.( Connes-Kreimer 2000) ◮ Exact renormalization is an algebraic Birkhoff decomposition → Hopf algebra of decorated rooted trees.

  3. Program ◮ Birkhoff decomposition ◮ Exact Renormalization Group equations as fixed point equation ◮ Power series of trees ◮ Algebraic Birkhoff decomposition for the ERG Algebraic Birkhoff decomposition for the continuous renormalization group , with F. Girelli and T. Krajewski, J. Math. Phys. 45 (2004) 4679-4697. Wilsonian renormalization, differential equations and Hopf algebras , with T. Krajewski, to appear in Contemporary Mathematics Series of the AMS.

  4. Birkhoff decomposition γ Lie group G Complex plane C D γ (C) C + C − γ ( z ) = γ − 1 z ∈ C where γ ± : C ± → G are holomorphic. − ( z ) γ + ( z ) , → G nice enough: exists for any loop γ , unique assuming γ − ( ∞ ) = 1. → γ defined on C + with pole at D : γ → γ + ( D ) is a natural principle to extract finite value from singular expression γ ( D ). → dimensional regularization in QFT: D is the dimension of space time, G is the group of characters of the Hopf algebra of Feynman diagrams.

  5. Birkhoff decomposition: Hopf algebra of Feynman diagrams Coalgebra C o : reverse the arrow ! Coproduct ∆ : C 0 �→ C 0 ⊗ C 0 , counity η : C 0 �→ C , ∆ ⊗ id C C o ⊗ C o ⊗ C o ← − C o ⊗ C o � �   id C ⊗ ∆  ∆  ∆ C o ⊗ C o ← − C o η ⊗ id C id C ⊗ η C ⊗ C o ← − C o ⊗ C o C o ⊗ C ← − C o ⊗ C o � � � �      ∆  ∆ � � id C id C C o ← − C o C o ← − C o

  6. Birkhoff decomposition: Hopf algebra of Feynman diagrams Bialgebra B : algebra + coalgebra. Antipode S : B �→ B , id B ∗ S . S ∗ id B . = m (id B ⊗ S )∆ = η 1 , = m ( S ∗ id B )∆ = η 1 . Bialgebra with antipode = Hopf algebra H . → 1PI-Feynman diagrams form an Hopf algebra, → Combinatorics of perturbative renormalization is encoded within the coproduct ∆.

  7. Birkhoff decomposition: Hopf algebra of Feynman diagrams The Hopf algebra H F of Feynman diagrams: Algebra structure: -product: disjoint union of graphs, -unity: the empty set. Hopf algebra structure: -counity: η ( ∅ ) = 1, η (Γ) = 0 otherwise, -coproduct: ∆(Γ) = Γ ⊗ 1 + 1 ⊗ Γ + Σ γ � Γ γ ⊗ Γ /γ ∆( ) = ⊗ 1 + 1 ⊗ ∆( ) = ⊗ 1 + 1 ⊗ + 2 ⊗ 1 ⊗ ⊗ 1 + ⊗ ∆( ) = + -antipode: built by induction.

  8. Birkhoff decomposition: perturbative renormalization A : complex functions in C , pole in D (=4). A + : holomorphic functions in C . 1 A − : polynˆ omial in z − D without constant term. U  ⇒ A Feynman rules : H F =   C ⇒ A − Conterterms : H F =  R  Renormalized theory : H F = ⇒ A + C ∗ U = R Compose with character χ z of A , γ ( z ) . γ − ( z ) . γ + ( z ) . = χ z ◦ U , = χ z ◦ C , = χ z ◦ R , γ ( z ), z ∈ C is a loop within the group G of characters of H F , γ ( z ) = γ − 1 − ( z ) γ + ( z ) . The renormalized theory is the evaluation at D of the positive part of the Birkhoff decomposition of the bare theory.

  9. Birkhoff decomposition: algebraic formulation The Exact Renormalization Group equations govern the evolution of the parameters of the theory with respect to the scale of observation (e.g. energie Λ), Λ ∂ ∂ Λ S = β (Λ , S ) where S (Λ) ∈ E , vector space of ”actions”. ◮ no analogous to the dimension D where to localize the pole ◮ analogous to C ∗ U = R . Definition( Connes, Kreimer, Kastler ): H commutative Hopf algebra, A commutative algebra. p − projection onto a subalgebra A − . An algebra morphism γ : H → A has a unique algebraic Birkhoff decomposition if there exist two algebra morphisms γ + , γ − from H to A such that γ + = γ − ∗ γ p + γ + = γ + , p − γ − = γ − with p + the projection on A + = Ker p − .

  10. ERG as fixed point equation Dimensional analysis : Λ → t , S → x , β �→ X , ∂ x ∂ t = Dx + X ( x ) x ( t ) ∈ E , D diagonal matrix of dimensions, X smooth operator E → E , x ( y , y ) + ... + 1 x ( y , ..., y ) + O ( � y � n +1 ) X ( x + y ) = X ( x ) + X ′ x ( y ) + X ′′ n ! X [ n ] is a linear symmetric application from E [ n ] to E . where X [ n ] x � t x ( t ) = e ( t − t 0 ) D x 0 + e ( t − u ) D X ( x ( u )) du . t 0 E of smooth maps from R ∗ + to E , as well as x belongs to the space ˜ x 0 : t �→ e ( t − t 0 ) D x 0 . ˜ Define χ 0 , smooth map from ˜ E to ˜ E , � t e ( t − u ) D X ( x ( u )) du . χ 0 ( x ) : t �→ t 0

  11. ERG as fixed point equation Fixed point equation x = ˜ x 0 + χ 0 ( x ) ◮ x ( t ) represents the parameters at a scale t . ◮ ˜ x 0 encodes the initial conditions at a fixed scale t 0 . Wilson’s ERG context: t 0 is an UV cutoff. One interested in t 0 → + ∞ .

  12. ERG as fixed point equation: mixed initial conditions  converges on E +  x 0 ( t ) = e ( t − t 0 ) D x 0 is constantly zero on E 0 ˜ as t 0 → + ∞ diverges on E −  where E + , E 0 , E − are proper subspaces of D corresponding to positive, zero and negative eigenvalues ( irrelevant , marginal , relevant ). ◮ Finiteness of x ( t ) at high scale by imposing initial conditions for relevant sector at scale t 1 � = t 0 . ◮ P orthogonal projection E �→ E − allows mixed initial conditions x R . = P ˜ x 1 + ( I − P )˜ x 0 : ◮ χ R . � t t i e ( t − u ) D X ( x ( u )) du = P χ 1 + ( I − P ) χ 0 with χ i ( x ) : t �→ x ( t ) = x R + χ R ( x ) Renormalization deals with change of initial condition in fixed point equation.

  13. Power series of trees: smooth non linear operators χ is a smooth operator from ˜ E to ˜ E : x ( y , y ) + ... + 1 χ ( x + y ) = χ ( x ) + χ ′ x ( y ) + χ ′′ n ! χ [ n ] x ( y , ..., y ) + O ( � y � n +1 ) E [ n ] to ˜ where χ [ n ] is a linear symmetric application from ˜ E . x ◮ Physicists’ notations: x = { x µ } , χ ( x ) = { χ µ ( x ) } , χ ′ x ( y ) = ∂ ν χ µ χ ′′ x ( y 1 , y 2 ) = ∂ νρ χ µ 1 y ρ / x y ν , / x y ν 2 . ◮ Coordinate free notations: χ ′ ( χ ) is the map ˜ E → ˜ E y �→ χ ′ y ( χ ( y )) .

  14. Power series of trees: smooth non linear operators � � � � � � � � � � � ����� ����� ����� ����� ����� ����� ����� ����� � � ����� ����� ����� ����� ����� ����� ����� ����� � � � � ����� ����� ����� ����� ����� ����� ����� ����� = 1 χ ∅ . χ • . � � . ����� ����� ����� ����� ����� ����� ����� ����� . � � ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� = χ ′ ( χ ) , ����� ����� ����� ����� ����� ����� ����� ����� 2 χ ′′ ( χ, χ ) ... ����� ����� ����� ����� ����� ����� ����� ����� = I , = χ, χ χ Taylor expansion: � � � � � � � � � � � ����� ����� ����� ����� ����� ����� ����� ����� � � ����� ����� ����� ����� ����� ����� ����� ����� � � � � ����� ����� ����� ����� ����� ����� ����� ����� � � ����� ����� ����� ����� ����� ����� ����� ����� χ • + χ � � ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� χ ( I + χ ) = + χ + ... T φ ( T ) χ T = Σ = f φ [ χ ] where φ ( T ) = 1 for any rooted tree T , except φ ( ∅ ) = 0.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend