almost sure hedging under permanent price impact
play

Almost-sure hedging under permanent price impact Y.Zou Universit e - PowerPoint PPT Presentation

Almost-sure hedging under permanent price impact Y.Zou Universit e Paris Dauphine April 20, 2016 Y.Zou (Universit e Paris Dauphine) JPS les Houches April 20, 2016 1 / 16 Outline 1 Introduction 2 Process dynamics and hedging problems


  1. Almost-sure hedging under permanent price impact Y.Zou Universit´ e Paris Dauphine April 20, 2016 Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 1 / 16

  2. Outline 1 Introduction 2 Process dynamics and hedging problems Impact rule and continuous trading dynamics Hedging problem: covered options 3 Super-replication under gamma constraint Statement of pricing PDE Viscosity solution of the pricing PDE Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 2 / 16

  3. Introduction Objective: Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 3 / 16

  4. Introduction Objective: 1 Consider a pricing model with impact and liquidity cost. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 3 / 16

  5. Introduction Objective: 1 Consider a pricing model with impact and liquidity cost. 2 Not high frequency (no bid-ask spread), but still impact on prices. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 3 / 16

  6. Introduction Objective: 1 Consider a pricing model with impact and liquidity cost. 2 Not high frequency (no bid-ask spread), but still impact on prices. 3 Permanent impact. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 3 / 16

  7. Introduction Objective: 1 Consider a pricing model with impact and liquidity cost. 2 Not high frequency (no bid-ask spread), but still impact on prices. 3 Permanent impact. Approach: Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 3 / 16

  8. Introduction Objective: 1 Consider a pricing model with impact and liquidity cost. 2 Not high frequency (no bid-ask spread), but still impact on prices. 3 Permanent impact. Approach: 1 Define a continuous time trading dynamics from a discrete time rule. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 3 / 16

  9. Introduction Objective: 1 Consider a pricing model with impact and liquidity cost. 2 Not high frequency (no bid-ask spread), but still impact on prices. 3 Permanent impact. Approach: 1 Define a continuous time trading dynamics from a discrete time rule. 2 Provide the PDE characterization: stochastic target tool. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 3 / 16

  10. Impact rule & Trading signal Basic rule: an order δ moves the price by X t − − → X t = X t − + δf ( X t − ) , and costs δX t − + 1 2 δ 2 f ( X t − ) = δ ( X t − + X t ) . 2 Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 4 / 16

  11. Impact rule & Trading signal Basic rule: an order δ moves the price by X t − − → X t = X t − + δf ( X t − ) , and costs δX t − + 1 2 δ 2 f ( X t − ) = δ ( X t − + X t ) . 2 A trading signal is an Itˆ o process of the form � · � · Y = Y 0 + b s ds + a s dW s . 0 0 Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 4 / 16

  12. Discrete trading dynamics Trade at times t n i = iT/n the quantity δ n i = Y t n i − Y t n i − 1 . t n Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 5 / 16

  13. Discrete trading dynamics Trade at times t n i = iT/n the quantity δ n i = Y t n i − Y t n i − 1 . t n The stock price evolves according to � · X = X t n i + σ ( X s ) dW s t n i between two trades.(can add a drift or be multivariate.) Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 5 / 16

  14. Discrete trading dynamics Trade at times t n i = iT/n the quantity δ n i = Y t n i − Y t n i − 1 . t n The stock price evolves according to � · X = X t n i + σ ( X s ) dW s t n i between two trades.(can add a drift or be multivariate.) Dynamics of the wealth and of the asset: discrete trading and pass to the limit. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 5 / 16

  15. Continuous trading dynamics Passing to the limit n → ∞ , we have the following convergence in S 2 � · � · Y = Y 0 + b s ds + a s dW s 0 0 � · � · � · ( µ + a s σf ′ )( X s ) ds X = X 0 + σ ( X s ) dW s + f ( X s ) dY s + 0 0 0 � · � · Y s dX s + 1 a 2 V = V 0 + s f ( X s ) ds, 2 0 0 at a speed √ n , where V = cash part + Y X = “portfolio value” . Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 6 / 16

  16. Super-replication under gamma constraint Covered options: No initial/final market impact. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 7 / 16

  17. Super-replication under gamma constraint Covered options: No initial/final market impact. Super-replication: The minimum initial total wealth to cover the final payoff in almost sure sense. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 7 / 16

  18. Super-replication under gamma constraint Covered options: No initial/final market impact. Super-replication: The minimum initial total wealth to cover the final payoff in almost sure sense. Gamma constraint: Re-write the dynamics of Y as below: dY = a dW + b dt = γ a ( X ) dX + µ a,b Y ( X ) dt with γ a = a/ ( σ + af ). Then γ a ( X ) is bounded by some function. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 7 / 16

  19. Mathematical definition Super-hedging price under gamma constraint: v( t, x ) := inf { v = c + yx : ( c, y ) ∈ R 2 s.t. G γ ( t, x, v , y ) � = ∅} where G γ ( t, x, v , y ) is the set of ( a, b ) s.t. φ := ( y, a, b ) satisfies: V t,x, v ,φ ≥ g ( X t,x,φ ) , and γ a ( X ) ≤ ¯ γ ( X ) T T γ < 1 − ǫ , ǫ > 0. with f ¯ Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 8 / 16

  20. Informal derivation If we follow the delta-hedging rule: V = v( · , X ) , and Y = ∂ x v( · , X ) Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 9 / 16

  21. Informal derivation If we follow the delta-hedging rule: V = v( · , X ) , and Y = ∂ x v( · , X ) Equating the dt terms on V = v( · , X ) & dX terms on Y = ∂ x v( · , X ): 1 ∂ t v( · , X ) + 1 2 a 2 f ( X ) 2( σ + af ) 2 ( X ) ∂ 2 xx v( · , X ) = ∂ 2 γ a = xx v( · , X ) Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 9 / 16

  22. Informal derivation If we follow the delta-hedging rule: V = v( · , X ) , and Y = ∂ x v( · , X ) Equating the dt terms on V = v( · , X ) & dX terms on Y = ∂ x v( · , X ): 1 ∂ t v( · , X ) + 1 2 a 2 f ( X ) 2( σ + af ) 2 ( X ) ∂ 2 xx v( · , X ) = ∂ 2 γ a = xx v( · , X ) By definition of γ a and some calculate: � � σ 2 − ∂ t v − 1 xx v) ∂ 2 ( · , X ) = 0 xx v (1 − f∂ 2 2 Gamma constraint insures the non-singularity of the PDE. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 9 / 16

  23. Pricing PDE and Terminal condition Pricing PDE: on [0 , T ) × R � � σ 2 γ − 1 γ ) ∂ 2 γ − ∂ 2 − ∂ t v ¯ F [v ¯ γ ]( t, x ) := min xx v ¯ γ , ¯ xx v ¯ γ (1 − f∂ 2 2 xx v ¯ = 0 Propagation of the gamma constraint to the boundary: γ ( T − , · ) = ˆ v ¯ g on R where ˆ g is the smallest (viscosity) super-solution of γ − ∂ 2 min { ϕ − g, ¯ xx ϕ } = 0 Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 10 / 16

  24. Super-solution property Theorem (Geometric Dynamic Programming Principle) If V 0 > v(0 , X 0 ) , then there exists ( a, b, Y 0 ) such that V θ ≥ v( θ, X θ ) for any stopping time θ ∈ [0 , T ] . Result: A super-solution v ¯ γ ≤ v ¯ γ . cf. N.Touzi, M.Soner. Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 11 / 16

  25. Sub-solution property: shaken operator γ ≥ v ¯ Objective: Construct a solution ¯ v ¯ γ . Theorem Define the shaken operator � � σ 2 ( x ′ ) F ǫ [ ϕ ]( t, x ) := γ ( x ′ ) − ∂ 2 − ∂ t ϕ + x ′ ∈ B ǫ ( x ) min min xx ϕ ) , ¯ xx ϕ ( t, x ) 2(1 − f ( x ′ ) ∂ 2 v ǫ then ∀ ǫ > 0 , ∃ ¯ γ the unique continuous viscosity solution of ¯ F ǫ [ ϕ ]( t, x ) ✶ [0 ,T ) + [ ϕ − (ˆ g + ǫ )] ✶ { T } = 0 v ǫ Moreover, ¯ γ ≥ ˆ g + ǫ/ 2 on [ T − c ǫ , T ] × R . ¯ Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 12 / 16

  26. ✶ ✶ Sub-solution property: shaken operator Objective: Construct a solution ¯ v ¯ γ ≥ v ¯ γ . Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 13 / 16

  27. Sub-solution property: shaken operator Objective: Construct a solution ¯ v ¯ γ ≥ v ¯ γ . By the stability of viscosity solution: v ǫ γ → ¯ as ǫ → 0 ¯ v ¯ γ , ¯ where ¯ v ¯ γ is the unique viscosity solution of F [ ϕ ]( t, x ) ✶ [0 ,T ) + ( ϕ − ˆ g ) ✶ { T } = 0 Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 13 / 16

  28. Sub-solution property: shaken operator Objective: Construct a solution ¯ v ¯ γ ≥ v ¯ γ . By the stability of viscosity solution: v ǫ γ → ¯ as ǫ → 0 ¯ v ¯ γ , ¯ where ¯ v ¯ γ is the unique viscosity solution of F [ ϕ ]( t, x ) ✶ [0 ,T ) + ( ϕ − ˆ g ) ✶ { T } = 0 γ ≥ v ¯ Remain to prove: ¯ v ¯ γ . Y.Zou (Universit´ e Paris Dauphine) JPS les Houches April 20, 2016 13 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend