alma the effects of far uv cosmic rays on hd cooling
play

ALMA The Effects of Far UV - PowerPoint PPT Presentation

ALMA The Effects of Far UV & Cosmic Rays on HD Cooling in Population III.2 Star Formation , D1 Sat, 26 Jan.


  1. 大向 一行 兼 初代星初代銀河研究会 ALMA 時代の宇宙構造形成理論 The Effects of Far UV & Cosmic Rays on HD Cooling in Population III.2 Star Formation 仲内 大翼(京都大学 , D1 ) 稲吉 恒平 Sat, 26 Jan. 2013

  2. §1. Introduction §2. Self-Gravitating Clouds in Relic HII Regions §3. Shock-Experienced Gas Clouds §4. Summary

  3. §1. Introduction

  4. Population III.2 Population III.1 : the very first stars formed from primordial gas Population III.2 : stars formed from primordial gas that has been affected by other stars ★ Under what environments would Pop III.2 stars be born ? ★ 1) Relic HII region ionized ! 2) Shock-experienced gas cloud (virialization shock or supernova remnant shock). with External Radiation, Cosmic Ray Irradiation etc. HII region Relic HII region SNR shock in a halo Pop III.1

  5. Pop III.1 vs Pop III.2 10 4 ★ III.1 : formed from neutral gas H2 cooling dominates all the way. H2 10 3 III.1 ★ III.2 : T [ K ] formed from ionized primordial gas 10 2 HD III.2 H + e − → H − + γ 1 10 4 M � H2 H − + H → H 2 + e − 10 3 M � 10 2 M � 2 19 10 M � + 10 1 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 n [ cm -3 ] � � � � gas is cooled to ~ 100 K ★ Fragment mass scales � � � � 3 / 2 � � � � T n � − 1 / 2 HD M J , III . 1 ∼ 10 3 M � D + + H 2 → HD + H + . 10 4 cm − 3 200 K � 3 / 2 � � HD cooling dominates for T < 100 K � − 1 / 2 T n M J , III . 2 ∼ 40 M � 10 5 cm − 3 50 K cooled up to ~ T CMB ( z ) Pop III.2 : e.g., Uehara & Inutsuka 00 Possibility of low-mass zero-metal star Nakamura & Umemura 02

  6. Effects of External Radiation and CRs ★ Lyman - Werner (11.2 - 13.6 eV) Ultra Violet radiation Photodissociation of H2 and HD molecules. H 2 + γ → 2H Suppressed ! → HD + γ → H + D H + e − → H − + γ 1 ★ External Radiation with energy > 0.75 eV H − + H → H 2 + e − 2 → + H − + γ → H + e − + negative feedback for cooling ★ Cosmic Ray irradiation Activated ! Photoionization of H atoms. H + e − → H − + γ 1 − + → H + CR → e − + H + H − + H → H 2 + e − 2 + positive feedback for cooling

  7. Can HD cooling dominate in Pop III.2 formation ? J 21 , crit ∼ 0 . 01 is enough to suppress HD cooling. Yoshida +07, � � Wolcott-Green & Haiman 11 J J 21 ≡ 10 − 21 erg / cm 2 / s / Hz * Background FUV intensity : e.g., Trenti + 09 − @ s J 21 ∼ 0 . 1 − 1 z ∼ 10 Is HD cooling minor contributor !? However, only negative feedbacks were considered ! Positive feedbacks should also be considered ! ★ CRs irradiation → positive feedback for HD cooling y J 21 , crit →

  8. Our Study ★ Thermal evolutions of gas clouds under the irradiation of FUV and CRs are calculated. n � 10 7 cm − 3 Focusing on low-density ( ) regions. ★ Pop III.2 star formation in 1) self-gravitating clouds in relic HII regions 2) shock-experienced gas cloud are considered. Quantitatively discuss when HD cooling can be the dominant cooling process in primordial gas.

  9. §2. Self-Gravitating Clouds in Relic HII Regions

  10. で計算し直すべき で計算し直すべき Thermal Evolution of Self-Gravitating Clouds in Relic HII Regions Relic HII region ★ one-zone model HII region in a halo d ρ � � de dt = − P d 1 − Λ net dt = ρ , t ff dt ρ ρ Pop III.1 ★ Initial Conditions Yoshida + 07 Whalen + 04 f n 0 = 0 . 3 cm − 3 ts T 0 ∼ 10000 K Kitayama + 04 No CR � 19 = 0.0 10 4 J21 = 0.0 No FUV & CR case J21 = 0.01 J21 = 0.1 J21 = 1 HD cooling dominates. J21 = 10 10 3 H2 only T [ K ] FUV irradiation : J21 FUV 10 2 HD-domi. HD cooling is suppressed for 10 4 M � 10 3 M � 10 2 M � 19 10 M � J 21 � 0 . 02 10 1 * * 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 J 21 , bg ∼ 0 . 1 − 1 n [ cm -3 ]

  11. ★ ★ When does HD cooling dominate ? With CRs J 21 = 0.1 relic HII region � 10 4 10 4 10 4 � 19 = 0.0 n 0 = 0.03 0.1 (fiducial) n 0 = 0.3 1.0 n 0 = 3 10 3 10 theory 100 10 3 10 3 J crit H2 only 10 2 HD cooling T [ K ] suppressed J 21 10 1 10 2 CR 10 2 HD-domi. 10 4 M � 10 0 10 3 M � 10 2 M � HD cooling 19 10 M � 10 1 10 1 dominated 10 -1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 10 -1 10 -1 n [ cm -3 ] CR irradiation : ζ 19 10 -2 10 -1 10 0 10 1 10 2 10 3 the CR int � 19 10 − 19 s − 1 . normalized by HD cooling dominates. For ζ 19 � 3 ζ 19 � 5 CR effect independent of initial conditions. J crit ζ 19

  12. §3. Shock-Experienced Gas Clouds

  13. とかもやるべき、後者の場合 になってしまう は計算済み は計算済み とかもやるべき、後者の場合 になってしまう Shock-Experienced Gas Clouds shock ★ virialization shock : cooled layer γ γ v infall c T c � 1 / 3 � 1 + z vir � 1 / 2 � M vir n c r ∼ 20 km / s . 10 7 h − 1 M � 15 ρ , v, T ρ 0 , v 0 ρ 1 , v 1 , T ∼ H/c post pre 1 , T 1 , v, T t cross ∼ H/c s ( T c ) � ★ Post-shock flow : 1-D strong steady shock t ff ∼ 1 / G ρ c ρ 1 v 1 = ρ v, P ( ρ ) = 4 � 1 − 3 ρ 1 � → const. 3 ρ 1 v 2 1 4 ρ 1 + P 1 = ρ v 2 + P, c T → T c t ff � t cool ρ 1 v 2 n → n c ρ T ∝ ρ − 1 � 1 � de dt = − P d − Λ net , dt ρ ρ Formation and growth of cooled layer becomes fragment n c c T c the cooled layer with self-gravitated & ∼ H/c contract t cross � t ff t cross ∼ t ff t cross � t ff t cross

  14. は計算済み とかもやるべき、後者の場合 になってしまう は計算済み とかもやるべき、後者の場合 になってしまう Thermal Evolution of the Post Shock Flow ★ After : one-zone model t cross � t ff No CR � 19 = 0, n 0 = 0.1, v 0 = 40, y 0 (e) = 10 -2 10 4 d ρ � � de dt = − P d 1 − Λ net dt = ρ J21 = 0.0 , J21 = 0.01 t ff dt ρ ρ J21 = 0.1 J21 = 1 J21 = 10 ★ Initial Conditions 10 3 H2 only y n 0 = 0 . 1 cm − 3 , t v 0 = 40 km / s. isobaric 10 2 M � T [ K ] FUV 10 2 No FUV & CR case 10 4 M � c T c HD-domi. HD cooling dominates. 10 3 M � 19 10 M � 10 1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 n c FUV irradiation : J21 n [ cm -3 ] ★ In relic HII region case, HD cooling is suppressed for J 21 � 0 . 1 HD cooling is suppressed for J 21 � 0 . 02 shock experienced gas is favorable for efficient HD cooling.

  15. 右上: を変えた時の であ 右下: 左下: としている。左上: におけるガスの熱進化の違い。 を変えた時の 。 ★ ★ の等高線。左上から ★ る。斜め点線は であ る。斜め点線は の等高線。左上から 右下: 左下: としている。左上: 。 右上: におけるガスの熱進化の違い。 When does HD cooling dominate ? With CRs shock compressed gas J 21 = 1.0, n 0 = 0.1, v 0 = 40, y 0 (e) = 10 -2 10 4 10 4 (fiducial) v 0 = 40, n 0 = 0.1 � 19 = 0.0 v 0 = 40, n 0 = 1 0.1 v 0 = 20, n 0 = 0.1 1 10 3 HII 10 100 theory 10 3 10 2 H2 only HD cooling T [ K ] suppressed J 21 10 1 CR c T c 10 2 n 0 HD-domi. 10 4 M � 10 0 HD cooling (fiducial) 10 3 M � y v 0 dominated 10 2 M � 19 10 M � n c 10 -1 10 1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 n [ cm -3 ] 10 -2 10 -1 10 0 10 1 10 2 10 3 CR irradiation : ζ 19 � 19 ζ 19 J crit For HD cooling dominates. 1 ζ 19 � 10 ζ 19 � 20 CR effect ★ n 0 J crit ( ζ 19 � 20) independent of initial conditions. y v 0 J crit ( ζ 19 � 20)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend