all surfaces are orientable
play

(All surfaces are orientable) M C = { M R 3 complete embedded - PowerPoint PPT Presentation

Recent advances in minimal surface theory in R 3 Joaqu n P erez (joint work with Bill Meeks & Antonio Ros) email: jperez@ugr.es http://wdb.ugr.es/ jperez/ Work partially supported by the State Research Agency (SRA) and European


  1. Recent advances in minimal surface theory in R 3 Joaqu´ ın P´ erez (joint work with Bill Meeks & Antonio Ros) email: jperez@ugr.es http://wdb.ugr.es/ ∼ jperez/ Work partially supported by the State Research Agency (SRA) and European Regional Development Fund (ERDF) Grants no. MTM2014-52368-P and MTM2017-89677-P (AEI/FEDER, UE) Modern Trends in Differential Geometry S˜ ao Paulo, 23-27 July 2018 Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 1 / 16

  2. (All surfaces are orientable) M C = { M ⊂ R 3 complete embedded minimal surface | g ( M ) < ∞} M C ( g ) = { M ∈ M C | g ( M ) = g } M P = { M ∈ M C | proper } , M P ( g ) = M P ∩ M C ( g ) Main goals: 1. Examples; special families 4. Classification 2. Conformal structure 5. Properness vs completeness 3. Asymptotics 6. Limits M ∈ M C ⇒ M noncompact ⇒ E ( M ) = { ends of M } � = Ø. Definition 1 A = { α : [0 , ∞ ) → M proper arc } . α 1 ∼ α 2 if ∀ C ⊂ M cpt set, α 1 , α 2 lie eventually in the same compnt of M − C . E ( M ) = A / ∼ ← − set of ends of M . E ⊂ M proper subdomain, ∂ E cpt. E represents [ α ] ∈ M ( E ) if α [ t 0 , ∞ ) ⊂ E for some t 0 . M C ( g , k ) = { M ∈ M C ( g ) | # E ( M ) = k } , k ∈ N ∪ {∞} M P ( g , k ) = M P ∩ M C ( g , k ). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 2 / 16

  3. Surfaces with finite topology (# E ( M ) < ∞ ) “Classical” examples: plane catenoid (1744) helicoid (1776) Costa (1982) Hoffman-Meeks (1990) Theorem 1 (Colding-Minicozzi, Annals 2008) M ∈ M C , # E ( M ) < ∞ ⇒ M ∈ M P . Calabi-Yau problem: M C = M P ? Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 3 / 16

  4. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  5. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Theorem 3 (Bernstein-Breiner’ Commentarii 2011, Meeks-P) M ∈ M P ( g , 1) , g ≥ 1 ⇒ M asymptotic to helicoid (conformally parabolic) M parabolic def ⇔� ∃ f ∈ C ∞ ( M ) nonconstant s.t. f ≤ 0, ∆ f ≥ 0. Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  6. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Theorem 3 (Bernstein-Breiner’ Commentarii 2011, Meeks-P) M ∈ M P ( g , 1) , g ≥ 1 ⇒ M asymptotic to helicoid (conformally parabolic) Theorem 4 (Hoffman-Weber-Wolf, Annals 2009) M P (1 , 1) � = Ø (existence of a genus 1 helicoid). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  7. # E ( M ) = 1 (one-ended surfaces) Theorem 2 (Meeks-Rosenberg, Annals 2005) M P (0 , 1) = { plane, helicoid } (conformally C ). Theorem 3 (Bernstein-Breiner’ Commentarii 2011, Meeks-P) M ∈ M P ( g , 1) , g ≥ 1 ⇒ M asymptotic to helicoid (conformally parabolic) Theorem 4 (Hoffman-Weber-Wolf, Annals 2009) M P (1 , 1) � = Ø (existence of a genus 1 helicoid). Theorem 5 (Hoffman-Traizet-White, Acta 2016) ∀ g ∈ N , M P ( g , 1) � = Ø (existence of a genus g helicoid). Uniqueness? Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 4 / 16

  8. 2 ≤ # E ( M ) = k < ∞ Theorem 6 (Collin, Annals 1997) � M ∈ M P ( g , k ) , 2 ≤ k < ∞ ⇒ finite total curvature ( M K > −∞ ) conf. ∼ Consequence: M = M g − { p 1 , . . . , p k } , ends asymptotic to planes or half-catenoids, Gauss map extends meromorphically through the p i (Osserman) Theorem 7 (Schoen, JDG 1983) M ∈ M C ( g , 2) + finite total curvature ⇒ catenoid. Theorem 8 (L´ opez-Ros, JDG 1991) M ∈ M C (0 , k ) + finite total curvature ⇒ plane, catenoid. Theorem 9 (Costa, Inventiones 1991) M ∈ M C (1 , 3) + finite total curvature ⇒ M deformed Costa-Hoffman-Meeks (1-parameter family). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 5 / 16

  9. 2 ≤ # E ( M ) = k < ∞ : The Hoffman-Meeks Conjecture Conjecture 1 If M ∈ M C ( g , k ) + finite total curvature (FTC) = ⇒ k ≤ g + 2 . Theorem 10 (Meeks-P-Ros, 2016) Given g ∈ N , ∃ C = C ( g ) ∈ N s.t. k ≤ C ( g ) , ∀ M ∈ M C ( g , k ) . � � � M ⊂ R 3 minimal surface, f ∈ C ∞ d 2 0 ( M ) ⇒ 0 Area( M + tfN ) = − M f Lf dA , � dt 2 L = ∆ − 2 K (Jacobi operator). Ω ⊂⊂ M . Index(Ω) = # { negative eigenvalues of L for Dirichlet problem on Ω } Index( M ) = sup { Index( L , Ω) | Ω ⊂⊂ M } . If M complete, then FTC ⇔ Index( M ) < ∞ (Fischer-Colbrie) If M ∈ M C ( g , k ) FTC ⇒ Index( M )= Index (∆ + �∇ N � 2 ) on compactification M g φ : M → S 2 holom map on M cpt ⇒ Index(∆ + �∇ φ � 2 ) < 7 . 7 deg( φ ) (Tysk) If M ∈ M C ( g , k ) has FTC ⇒ deg( N ) = g + k − 1 (Jorge-Meeks) Corollary 1 (Meeks-P-Ros, 2016) Given g ∈ N , ∃ C 1 = C 1 ( g ) ∈ N s.t. Index ( M ) ≤ C 1 ( g ) , ∀ M ∈ M C ( g , k ) . Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 6 / 16

  10. # E ( M ) = ∞ : EMS with infinite topology Riemann (1867) Hauswirth-Pacard (2007) Traizet (2012) g = ∞ Definition 2 E ( M ) ֒ → [0 , 1] embedding. e ∈ E ( M ) simple end if e isolated in E ( M ). e ∈ E ( M ) limit end if not isolated. Theorem 11 (Collin-Kusner-Meeks-Rosenberg, JDG 2004) If M ∈ M P ( g , ∞ ) ⇒ M has at most two limit ends (top and/or bottom). Theorem 12 (Hauswirth-Pacard, Inventiones 2007) If 1 ≤ g ≤ 37 ⇒ M P ( g , ∞ ) � = Ø (g ≥ 38 Morabito IUMJ 2008). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 7 / 16

  11. # E ( M ) = ∞ : EMS with infinite topology Theorem 13 (Meeks-P-Ros, Inventiones 2004) If M ∈ M P ( g , ∞ ) , g < ∞ ⇒ M cannot have just 1 limit end. Theorem 14 (Meeks-P-Ros, Annals 2015) M P (0 , ∞ ) = { Riemann minimal examples } . If M ∈ M P ( g , ∞ ) , g < ∞ (two limit ends) ⇒ simple (middle) ends are asymptotic to planes, and limit ends are asymptotic to Riemann limit ends (conformally parabolic) Theorem 15 (Traizet, IUMJ 2012) ∃ M ⊂ R 3 CEMS with infinite genus and 1 limit end, all whose simple ends are asymptotic to half-catenoids. Theorem 16 (Meeks-P-Ros, 2018, Calabi-Yau for finite genus ) If M ∈ M C ( g , ∞ ) countably many limit ends ⇒ M ∈ M P , exactly 2 limit ends, conformally parabolic. Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 8 / 16

  12. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

  13. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

  14. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). 1 U β L C β 0 ϕ β D Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

  15. Limits of EMS open ⊂ R 3 } n emb min surf (EMS), ∂ M n cpt (possibly empty). { M n ⊂ A Classical limits (Arzel´ a-Ascoli) Locally bded curvature + Area( M n ) locally unifly bded + ∃ accumulation point subseq ⇒ { M n } n → M ∞ EMS inside A , with finite multiplicity. Theorem 17 (Lamination limits, Meeks-Rosenberg, Annals 2005) subseq Locally bded curv + ∃ accum point ⇒ { M n } n → L ∞ minimal lamination of A (closed union of disjoint EMS, called leaves). � � � S = x ∈ A | sup | K M n ∩ B ( x , r ) | → ∞ , ∀ r > 0 . Joaqu´ ın P´ erez (UGR) Recent advances in minimal surface theory MTDF 9 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend