algorithms for high dimensional non linear filtering and
play

Algorithms for high-dimensional non-linear filtering and smoothing - PowerPoint PPT Presentation

Algorithms for high-dimensional non-linear filtering and smoothing problems Jana de Wiljes, Sahani Pathiraja, Sebastian Reich Kobe 2019 Setting Model: x k +1 = f ( x k , . . . , x k n ) + k , k N (0 , Q ) (1) where x k +1 R N


  1. Algorithms for high-dimensional non-linear filtering and smoothing problems Jana de Wiljes, Sahani Pathiraja, Sebastian Reich Kobe 2019

  2. Setting Model: x k +1 = f ( x k , . . . , x k − n ) + ǫ k , ǫ k ∼ N (0 , Q ) (1) where x k +1 ∈ R N x and Q ∈ R N x × N x . Observations: (2) y k +1 = h ( x k +1 ) + ν k , ν k ∼ N (0 , R ) where y k +1 ∈ R N y and R ∈ R N y × N y . 1

  3. Filtering and Smoothing Problem Goal: Approximate • p ( x 0: T | y 1: T ) (joint smoothing density) • p ( x k | y 1: T ) (marginal smoothing density) • p ( x k | y 1: k ) (filtering density) Here focus on: Fixed-lag smoothing: p ( x k − L : k | y 1: k ) (3) Remark: • For L = 0 Fixed-lag smoothing = filtering • For L > 0 Fixed-lag smoothing can be interpreted as filtering with augmented state space 2

  4. State of the art Linear Model : Kalman Filter/Smoother • Gaussian posterior • deterministic formulas Nonlinear Model : approximate with empirical measure, i.e., M � 1 M δ ( x − x ( i ) p ( x 0: T | y 1: T ) ≈ 0: T | 1: T ) . i =1 → This approach leads to a variety of smoothers • Particle smoother • Ensemble Kalman smoother 3

  5. Particle collapse Degeneracy y k of Particle Smoother x ( i ) k − L : k w ( i ) k − L : k > 0 4

  6. Alternative approach Move particles y k towards observation x ( i ) k − L : k D k − L : k | k 5

  7. Linear Ensemble Transform Smoothers

  8. Linear Ensemble Transform Smoothers Update via linear transformation: X k − L : k | k = X k − L : k | k − 1 D k − L : k | k = X k − L : k | k − L D k − L : k | k − L +1 · · · · · D k − L : k | k where X k − L : k | k = [ x (1) k − L : k | k , ..., x ( M ) k − L : k | k ] ∈ R N X L × M and x ( i ) k − L : k | s ∼ p ( x k − L : k | y 1: s ) (4) with s ∈ { k − L , . . . , k } 6

  9. Motivation: LETS Benefits: • localisation [Reich, 2013][Poterjoy, 2015] • hybrid [Frei and K¨ unsch, 2013][Chustagulprom et al., 2016] • moment matching [T¨ odter and Ahrens, 2015, Bishop et al., 2001, Xiong et al., 2006, Lei and Bickel, 2011, Acevedo et al., 2017] Motivation for Hybrid formulations • Ensemble Kalman Filters (EnKFs) + Robust and moderately affordable – Gaussian assumptions • Traditional Particle Filters (PFs) + No Gaussianity assumptions – Liable to the ”Curse of Dimensionality” + consistent in the ensemble limit 7

  10. Example: Ensemble Kalman smoother Analysis step: X k | k = X k | k − 1 D k | k with 1 M − 1( x ( i ) { D k | k } ij = δ ij − k | k − 1 − m k | k − 1 ) · H ⊤ ( H P k | k − 1 H ⊤ + R ) − 1 ( H x ( j ) k | k − 1 + ξ ( j ) − y k ) Pros and Cons : + Robust and moderately affordable + Works well in practice – Gaussian assumptions – Mathematical foundation for nonlinear models largely missing 8

  11. Ensemble Square Root Smoother Transform coefficients: k − L : k | k − 1 w ( i ) ( D ESRS k − L : k | k ) ij := ( S k − L : k | k ) ij + ˆ M , (5) with Square root matrix � � − 1 / 2 1 HA k − L : k | k − 1 ) T R − 1 ˜ M − 1(˜ S k − L : k | k = I + HA k − L : k | k − 1 , where � � 1 x (1) m k − L : k | k − 1 , . . . , x ( M ) √ k − L : k | k − 1 − � k − L : k | k − 1 − � A k − L : k | k − 1 = m k − L : k | k − 1 M − 1 and k − L : k | k = 1 1 w ( i ) i S 2 k − L : k | k (˜ HA k − L : k | k − 1 ) T R − 1 (˜ M − 1 e T ˆ M − H � m k − L : k | k − 1 − y k ) 9

  12. Nonlinear Ensemble Transform Smoother [T¨ odter and Ahrens, 2015] NETF: √ D NETS M [ W k | k − w k | k ( w k | k ) T ] 1 / 2 Ω k − L : k | k = w k | k 1 + (6) where k | k ) T ∈ R M × 1 w = ( w (1) k | k , . . . , w ( M ) and W k | k = diag ( w k | k ) 10

  13. Ensemble Transform Particle Smoother [de Wiljes et al., 2019] Given: • M samples x ( i ) k − L : k | k − 1 ∼ p ( x k − L : k | y 1: k − 1 ) (prior ensemble) • normalized importance weights w ( j ) = p ( y k | x ( j ) k − L : k | k − 1 ) (likelihood) k Ansatz: replace resampling step with linear transformation by interpreting it as discrete Markov chain given by transition matrix [Reich, 2013] D ETPS k − L : k | k ∈ R M × M subject to: = ( D ETPS ( A ) d ETPS k − L : k | k ) ij ≥ 0 ∀ i , j ij ( B ) D ETPS k − L − k | k 1 = M w k (7) ( C ) ( D ETPS k − L : k | k ) T 1 = 1 11

  14. Ensemble Transform Particle Smoother [de Wiljes et al., 2019] Then the posterior ensemble members are distributed according to the columns of the transformation   d ETPS 1 j   d ETPS �   X ( j ) ∼ 2 j and x ( j ) x ( i ) ˜   k − L : k | k − 1 = E [ ˜ X ( j ) ] = k − L : k | k − 1 d ETPS .   ij .  .  i d ETPS Mj Example. Monomial resampling   w (1) w (1) w (1) · · ·   w (2) w (2) w (2) · · ·   D Mono   k − L : k | k := w ⊗ 1 = . . . . ...   . . .  . . .  w ( M ) w ( M ) w ( M ) · · · Here: X 1: k | k − 1 and X 1: k | k are independent. Idea: increase correlation between X 1: k | k − 1 and X 1: k | k 12

  15. Ensemble Transform Particle Smoother [de Wiljes et al., 2019] Idea: increase correlation between X 1: k | k − 1 and X 1: k | k Underlying ansatz: approximate a transfer map between X 1: k | k − 1 and X 1: k | k Note: choose transfer map that induces a coupling µ ∗ Z that minimizes � µ ∗ = arg E ||X 1: k | k − 1 − X 1: k | k || 2 inf µ ∈ Π( p X 1: k | k − 1 , p X 1: k | k ) 13

  16. Ensemble Transform Particle Smoother [de Wiljes et al., 2019] Discretization: Solve optimization problem M � k − L : k | k ) ij || x ( i ) k − L : k | k − 1 − x ( j ) D ETPS ( D ETPS k − L : k | k − 1 || 2 k − L : k | k = arg min i , j =1 to find transformation matrix D ETPS k − L : k | k that increases correlation ([Reich, 2013]). Remarks: • consistent for M → ∞ • maximizes correlation between prior and posterior ensembles • is deterministic, preserving the regularity of the state fields 14

  17. OT Solvers Exact solution • Computational complexity O ( M 3 ln( M )) • Efficient Earth Mover Distance algorithms available, e.g. FastEMD [Pele and Werman, 2009]. Entropic Regularized Approximation [Cuturi, 2013] M � k − L : k | k ) ij || x ( i ) k − L : k | k − 1 − x ( j ) ( D ETPS k − L : k | k − 1 || 2 J ( D ) = i , j =1 + 1 λ ( D ETPS k : k + L | k + L ) ij ln( D ETPS k : k + L | k + L ) ij • Sinkhorn’s fixed point iteration can be used. • Computational complexity O ( M 2 · C ( λ )) 1D Approximation(Each variable independently updated) • OT problem reduces to reordering. • Computational complexity O ( M ln( M )) 15 • No particle distance needed

  18. Combating challenges of nonlinear smoothing

  19. Adaptive spread correction and rotation

  20. Moment Matching Idea: design filter to match specific moments for a finite ensemble [Xiong et al., 2006][Lei and Bickel, 2011][T¨ odter and Ahrens, 2015] [Acevedo et al., 2017] Linear case: Kalman Formula m k − L : k | k = m k − L : k | k − 1 − K ( H m k − L : k | k − 1 − y k ) (8) P k − L : k | k = P k − L : k | k − 1 − KH P k − L : k | k − 1 (9) Nonlinear case: Particle filter, e.g., first and second moment M � w ( i ) k x ( i ) m k − L : k | k = k − L : k | k − 1 i =1 � M w ( i ) k ( x ( i ) k − L : k | k − m k − L : k | k )( x ( i ) k − L : k | k − m k − L : k | k ) T P k − L : k | k = i =1 16

  21. First-order accurate LETSs LETS is first-order accurate if � M w ( i ) k x ( i ) m k − L : k | k = (10) k − L : k | k − 1 i =1 is equal to � M m k − L : k | k = 1 x ( i ) � (11) k − L : k | k M i =1 17

  22. First-order accurate LETSs Class of first-order accurate LETSs D 1 = { D ∈ R M × M | D T 1 = 1 , D1 = M w } Examples : • D EnKS / ∈ D 1 • D ESRS / ∈ D 1 • D ETPS ∈ D 1 • D Mono ∈ D 1 • D NETS ∈ D 1 18

  23. First-order accurate LETSs Linear transformations D λ replacing resampling step : M � k − L : k | k ) ij || x ( i ) k − L : k | k − 1 − x ( j ) D λ ( D λ k − L : k | k − 1 || 2 k − L : k | k = arg min (12) i , j =1 + 1 λ ( D λ k − L : k | k ) ij ln( D λ k − L : k | k ) ij (13) for given λ > 0 subject to � � 1 ( D λ ( D λ ( D λ k − L : k | k ) ij = w ( i ) k − L : k | k ) ij ≥ 0 , k − L : k | k ) ij = 1 , k | k M i j Remark. • λ → 0: D 0 = w ⊗ 1 (monomial resampling). • λ → ∞ : D ∞ solves the optimal coupling/transport problem. • Effective iterative solvers are available [Cuturi, 2013]. 19

  24. Moment Matching The analysis covariance matrix � M P k − L : k | k = 1 � ( x ( i ) m k − L : k | k )( x ( i ) m k − L : k | k ) T . k − L : k | k − � k − L : k | k − � M i =1 is equal to the covariance matrix defined by the importance weights, i.e. � M w ( i ) k | k ( x ( i ) k − L : k | k − m k − L : k | k )( x ( i ) k − L : k | k − m k − L : k | k ) T P k − L : k | k = i =1 → the following equation has to be satisfied ( D k − L : k | k − w k | k 1 T )( D k − L : k | k − w k | k 1 T ) T = W k | k − w k | k w T k | k . 20

  25. Second-order corrected LETSs Given: D ∈ D 1 Goal: correct transformation � D ∈ D 2 Ansatz: � D = D + ∆ with ∆ ∈ R M × M such that ∆1 = 0 , ∆ T 1 = 0 ([Acevedo et al., 2017]). Need to solve algebraic Riccati equation: M ( W − ww T ) − ( D − w1 T )( D − w1 T ) T = ( D − w1 T ) ∆ T + ∆ ( D − w1 T ) T + ∆∆ T 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend