algorithmic problems for free abelian times free groups
play

Algorithmic problems for free-abelian times free groups Jordi - PowerPoint PPT Presentation

Z m F n generalities Algorithmic problems for Z m F n Algorithmic problems for free-abelian times free groups Jordi Delgado (joint with Enric Ventura) Universitat Polit` ecnica de Catalunya GAGTA-7 May 29th, 2013 CCNY, New York Z m


  1. Z m × F n generalities Algorithmic problems for Z m × F n Basis Given H � Z m × F n , we have H = ( H ∩ Z m ) × H πα

  2. Z m × F n generalities Algorithmic problems for Z m × F n Basis Given H � Z m × F n , we have H = ( H ∩ Z m ) × H πα where H ∩ Z m � Z m ,

  3. Z m × F n generalities Algorithmic problems for Z m × F n Basis Given H � Z m × F n , we have H = ( H ∩ Z m ) × H πα where H ∩ Z m � Z m , and H πα ≃ H π � F n .

  4. Z m × F n generalities Algorithmic problems for Z m × F n Basis Given H � Z m × F n , we have H = ( H ∩ Z m ) × H πα where H ∩ Z m � Z m , and H πα ≃ H π � F n . Definition We say that E ⊆ G is a basis of H if E = E T ∪ E X , where

  5. Z m × F n generalities Algorithmic problems for Z m × F n Basis Given H � Z m × F n , we have H = ( H ∩ Z m ) × H πα where H ∩ Z m � Z m , and H πα ≃ H π � F n . Definition We say that E ⊆ G is a basis of H if E = E T ∪ E X , where • E T is a basis (free-abelian) of H ∩ Z m ,

  6. Z m × F n generalities Algorithmic problems for Z m × F n Basis Given H � Z m × F n , we have H = ( H ∩ Z m ) × H πα where H ∩ Z m � Z m , and H πα ≃ H π � F n . Definition We say that E ⊆ G is a basis of H if E = E T ∪ E X , where • E T is a basis (free-abelian) of H ∩ Z m , • E X is a basis (free) of H πα .

  7. Z m × F n generalities Algorithmic problems for Z m × F n Basis Given H � Z m × F n , we have H = ( H ∩ Z m ) × H πα where H ∩ Z m � Z m , and H πα ≃ H π � F n . Definition We say that E ⊆ G is a basis of H if E = E T ∪ E X , where • E T is a basis (free-abelian) of H ∩ Z m , • E X is a basis (free) of H πα . Proposition If H is given by a finite family of generators, then we can compute a (finite) basis for H.

  8. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms

  9. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a )

  10. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n ,

  11. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices,

  12. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either

  13. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ),

  14. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power.

  15. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono.

  16. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono.

  17. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono. Ψ is epi ⇔ Ψ is of type I with φ epi and Q epi.

  18. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono. Ψ is epi ⇔ Ψ is of type I with φ epi and Q epi.

  19. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono. Ψ is epi ⇔ Ψ is of type I with φ epi and Q epi.

  20. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono. Ψ is epi ⇔ Ψ is of type I with φ epi and Q epi. Corollary F n × Z m is hopfian (and not cohopfian).

  21. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono. Ψ is auto ⇔ Ψ is of type I with φ auto and Q auto. Corollary F n × Z m is hopfian (and not cohopfian).

  22. Z m × F n generalities Algorithmic problems for Z m × F n Endomorphisms Proposition The endomorphisms of G = Z m × F n are of the form: Ψ : ( t a , u ) �→ ( t aQ + uP , u φ a ) where u = u ab ∈ Z n , Q and P are integer matrices, and φ a : F n → F n is either (I) an endomorphism φ : F n → F n (independent from a ), (II) a map u → w α ( a , u ) , where 1 � = w ∈ F n is not a proper power. Proposition Ψ is mono ⇔ Ψ is of type I with φ mono and Q mono. Ψ is auto ⇔ Ψ is of type I with φ auto and Q auto. Corollary F n × Z m is hopfian (and not cohopfian).

  23. Z m × F n generalities Algorithmic problems for Z m × F n Index Z m × F n generalities Algorithmic problems for Z m × F n

  24. Z m × F n generalities Algorithmic problems for Z m × F n Dehn and Membership problems

  25. Z m × F n generalities Algorithmic problems for Z m × F n Dehn and Membership problems Proposition • The Word Problem WP ( Z m × F n ) is solvable.

  26. Z m × F n generalities Algorithmic problems for Z m × F n Dehn and Membership problems Proposition • The Word Problem WP ( Z m × F n ) is solvable. • The Conjugacy Problem CP ( Z m × F n ) is solvable.

  27. Z m × F n generalities Algorithmic problems for Z m × F n Dehn and Membership problems Proposition • The Word Problem WP ( Z m × F n ) is solvable. • The Conjugacy Problem CP ( Z m × F n ) is solvable. • The Isomorphism Problem IP ( Z m × F n ) is solvable.

  28. Z m × F n generalities Algorithmic problems for Z m × F n Dehn and Membership problems Proposition • The Word Problem WP ( Z m × F n ) is solvable. • The Conjugacy Problem CP ( Z m × F n ) is solvable. • The Isomorphism Problem IP ( Z m × F n ) is solvable. Membership Problem, MP( G ) Given g 0 , g 1 , . . . , g k ∈ G , decide whether g 0 ∈ � g 1 , . . . , g k � ; if so, compute g 0 = w ( g 1 , . . . , g k ).

  29. Z m × F n generalities Algorithmic problems for Z m × F n Dehn and Membership problems Proposition • The Word Problem WP ( Z m × F n ) is solvable. • The Conjugacy Problem CP ( Z m × F n ) is solvable. • The Isomorphism Problem IP ( Z m × F n ) is solvable. Membership Problem, MP( G ) Given g 0 , g 1 , . . . , g k ∈ G , decide whether g 0 ∈ � g 1 , . . . , g k � ; if so, compute g 0 = w ( g 1 , . . . , g k ). Proposition The Membership Problem MP ( Z m × F n ) is solvable.

  30. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems

  31. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems Given g , h ∈ G , decide whether there exist an endo (mono, auto) of G sending g to h .

  32. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems Given g , h ∈ G , decide whether there exist an endo (mono, auto) of G sending g to h . In general, given F ⊆ End G ,

  33. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems Given g , h ∈ G , decide whether there exist an endo (mono, auto) of G sending g to h . In general, given F ⊆ End G , WhP( G , F ) ≡ ¿ ∃ ϕ ∈ F | g ϕ = h ? ( g , h ∈ G )

  34. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems Given g , h ∈ G , decide whether there exist an endo (mono, auto) of G sending g to h . In general, given F ⊆ End G , WhP( G , F ) ≡ ¿ ∃ ϕ ∈ F | g ϕ = h ? ( g , h ∈ G ) Theorem • WhP( F n , End F n ) is solvable (Makanin, 1982) .

  35. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems Given g , h ∈ G , decide whether there exist an endo (mono, auto) of G sending g to h . In general, given F ⊆ End G , WhP( G , F ) ≡ ¿ ∃ ϕ ∈ F | g ϕ = h ? ( g , h ∈ G ) Theorem • WhP( F n , End F n ) is solvable (Makanin, 1982) . • WhP( F n , Mon F n ) is solvable (Ciobanu and Houcine, 2010) .

  36. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems Given g , h ∈ G , decide whether there exist an endo (mono, auto) of G sending g to h . In general, given F ⊆ End G , WhP( G , F ) ≡ ¿ ∃ ϕ ∈ F | g ϕ = h ? ( g , h ∈ G ) Theorem • WhP( F n , End F n ) is solvable (Makanin, 1982) . • WhP( F n , Mon F n ) is solvable (Ciobanu and Houcine, 2010) . • WhP( F n , Aut F n ) is solvable (Whitehead, 1936) .

  37. Z m × F n generalities Algorithmic problems for Z m × F n Whitehead Problems Given g , h ∈ G , decide whether there exist an endo (mono, auto) of G sending g to h . In general, given F ⊆ End G , WhP( G , F ) ≡ ¿ ∃ ϕ ∈ F | g ϕ = h ? ( g , h ∈ G ) Theorem • WhP( F n , End F n ) is solvable (Makanin, 1982) . • WhP( F n , Mon F n ) is solvable (Ciobanu and Houcine, 2010) . • WhP( F n , Aut F n ) is solvable (Whitehead, 1936) . Theorem Whitehead problems for endos, monos and autos are solvable in Z m × F n .

  38. Z m × F n generalities Algorithmic problems for Z m × F n Subgroup and Coset Intersection Problems

  39. Z m × F n generalities Algorithmic problems for Z m × F n Subgroup and Coset Intersection Problems Remark Z m and F n are Howson, but Z m × F n is not.

  40. Z m × F n generalities Algorithmic problems for Z m × F n Subgroup and Coset Intersection Problems Remark Z m and F n are Howson, but Z m × F n is not. Example ( Moldavanski ) H 1 = � a , b � , H 2 = � ta , b � � Z × F 2 = � t | � × � a , b | � .

  41. Z m × F n generalities Algorithmic problems for Z m × F n Subgroup and Coset Intersection Problems Remark Z m and F n are Howson, but Z m × F n is not. Example ( Moldavanski ) H 1 = � a , b � , H 2 = � ta , b � � Z × F 2 = � t | � × � a , b | � . Subgroup Intersection Problem, SIP( G ) Given f.g. subgroups H , H ′ ≤ f . g . G , decide whether H ∩ H ′ is f.g.; if so, compute a generating set.

  42. Z m × F n generalities Algorithmic problems for Z m × F n Subgroup and Coset Intersection Problems Remark Z m and F n are Howson, but Z m × F n is not. Example ( Moldavanski ) H 1 = � a , b � , H 2 = � ta , b � � Z × F 2 = � t | � × � a , b | � . Subgroup Intersection Problem, SIP( G ) Given f.g. subgroups H , H ′ ≤ f . g . G , decide whether H ∩ H ′ is f.g.; if so, compute a generating set. Coset Intersection Problem, CIP( G ) Given H , H ′ ≤ f . g . G , and g , g ′ ∈ G , decide whether gH ∩ g ′ H ′ � = ∅ ; if so, compute a coset representative.

  43. Z m × F n generalities Algorithmic problems for Z m × F n Subgroup and Coset Intersection Problems Remark Z m and F n are Howson, but Z m × F n is not. Example ( Moldavanski ) H 1 = � a , b � , H 2 = � ta , b � � Z × F 2 = � t | � × � a , b | � . Subgroup Intersection Problem, SIP( G ) Given f.g. subgroups H , H ′ ≤ f . g . G , decide whether H ∩ H ′ is f.g.; if so, compute a generating set. Coset Intersection Problem, CIP( G ) Given H , H ′ ≤ f . g . G , and g , g ′ ∈ G , decide whether gH ∩ g ′ H ′ � = ∅ ; if so, compute a coset representative. Theorem SIP( Z m × F n ) and CIP( Z m × F n ) are solvable.

  44. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G )

  45. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives.

  46. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable.

  47. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n ,

  48. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n , we have

  49. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n , we have • { t b 1 , . . . , t b m ′ } free-abelian basis of H ∩ Z m , and

  50. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n , we have • { t b 1 , . . . , t b m ′ } free-abelian basis of H ∩ Z m , and • { t a 1 u 1 , . . . , t a n ′ u n ′ } free basis of H πα ≃ H π ,

  51. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n , we have • { t b 1 , . . . , t b m ′ } free-abelian basis of H ∩ Z m , and • { t a 1 u 1 , . . . , t a n ′ u n ′ } free basis of H πα ≃ H π , and we will write

  52. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n , we have • { t b 1 , . . . , t b m ′ } free-abelian basis of H ∩ Z m , and • { t a 1 u 1 , . . . , t a n ′ u n ′ } free basis of H πα ≃ H π , and we will write • L = � b 1 , . . . , b m ′ � � Z m

  53. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n , we have • { t b 1 , . . . , t b m ′ } free-abelian basis of H ∩ Z m , and • { t a 1 u 1 , . . . , t a n ′ u n ′ } free basis of H πα ≃ H π , and we will write • L = � b 1 , . . . , b m ′ � � Z m (subgroup of rank m ′ ),

  54. Z m × F n generalities Algorithmic problems for Z m × F n Finite Index Problem, FIP( G ) Given a subgroup H � f . g . G , decide whether [ G : H ] < ∞ ; if so, compute the index and a system of coset representatives. Theorem FIP( Z m × F n ) is solvable. Remark Given a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } of H � Z m × F n , we have • { t b 1 , . . . , t b m ′ } free-abelian basis of H ∩ Z m , and • { t a 1 u 1 , . . . , t a n ′ u n ′ } free basis of H πα ≃ H π , and we will write • L = � b 1 , . . . , b m ′ � � Z m (subgroup of rank m ′ ), � a 1 � . . • A = ∈ M n ′ × m ( Z ). . a n ′

  55. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n )

  56. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H .

  57. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n ,

  58. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , Remark • H � f . i . Z m × F n

  59. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , Remark � • H � f . i . Z m × F n ⇔

  60. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , Remark � H ∩ Z m � f . i . Z m • H � f . i . Z m × F n ⇔

  61. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , Remark � H ∩ Z m � f . i . Z m • H � f . i . Z m × F n ⇔ H ∩ F n � f . i . F n

  62. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , Remark � H ∩ Z m � f . i . Z m • H � f . i . Z m × F n ⇔ H ∩ F n � f . i . F n • H ∩ F n � H π � F n ,

  63. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , Remark � H ∩ Z m � f . i . Z m • H � f . i . Z m × F n ⇔ H ∩ F n � f . i . F n • H ∩ F n � H π � F n , where π : Z m × F n → F n is the projection map.

  64. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m Remark � H ∩ Z m � f . i . Z m • H � f . i . Z m × F n ⇔ H ∩ F n � f . i . F n • H ∩ F n � H π � F n , where π : Z m × F n → F n is the projection map.

  65. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m 2 H π � f . i . F n Remark � H ∩ Z m � f . i . Z m • H � f . i . Z m × F n ⇔ H ∩ F n � f . i . F n • H ∩ F n � H π � F n , where π : Z m × F n → F n is the projection map.

  66. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m 2 H π � f . i . F n 3 H ∩ F n � f . i . H π Remark � H ∩ Z m � f . i . Z m • H � f . i . Z m × F n ⇔ H ∩ F n � f . i . F n • H ∩ F n � H π � F n , where π : Z m × F n → F n is the projection map.

  67. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m 2 H π � f . i . F n 3 H ∩ F n � f . i . H π

  68. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m � L = � b 1 , . . . , b m ′ � � f . i . Z m 2 H π � f . i . F n 3 H ∩ F n � f . i . H π

  69. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m � L = � b 1 , . . . , b m ′ � � f . i . Z m � m ′ = m 2 H π � f . i . F n 3 H ∩ F n � f . i . H π

  70. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m � L = � b 1 , . . . , b m ′ � � f . i . Z m � m ′ = m � 2 H π � f . i . F n 3 H ∩ F n � f . i . H π

  71. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m � L = � b 1 , . . . , b m ′ � � f . i . Z m � m ′ = m � 2 H π � f . i . F n � � u 1 , . . . , u n ′ � � f . i . F n 3 H ∩ F n � f . i . H π

  72. Z m × F n generalities Algorithmic problems for Z m × F n Sketch of proof for FIP( Z m × F n ) • Compute a basis { t b 1 , . . . , t b m ′ , t a 1 u 1 , . . . , t a n ′ u n ′ } for H . Decision Problem In order to decide whether H � f . i . Z m × F n , it is enough to decide whether: 1 H ∩ Z m � f . i . Z m � L = � b 1 , . . . , b m ′ � � f . i . Z m � m ′ = m � 2 H π � f . i . F n � � u 1 , . . . , u n ′ � � f . i . F n � S ( H ) complete 3 H ∩ F n � f . i . H π

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend