algorithm for two dimensional
play

algorithm for two-dimensional strongly correlated systems and its - PowerPoint PPT Presentation

Massively parallel density matrix renormalization group method algorithm for two-dimensional strongly correlated systems and its applications 1st R-CCS Symposium (Kobe) Shigetoshi Sota 1 , Takami Tohyama 1,2 , Seiji Yunoki 1 1 RIKEN R-CCS, 2


  1. Massively parallel density matrix renormalization group method algorithm for two-dimensional strongly correlated systems and its applications 1st R-CCS Symposium (Kobe) Shigetoshi Sota 1 , Takami Tohyama 1,2 , Seiji Yunoki 1 1 RIKEN R-CCS, 2 Tokyo Univ. of Sci.

  2. Collaboration with large scale quantum beam experiments Large scale quantum beam facilities Quantum beams SPring-8 J-PARC Spin SACLA Strongly Charge correlated Orbit matter Phonon 茨城県東海村 兵庫県佐用町 Responses for the Collaboration between external fields : theoretical and experimental Quantum dynamics researchers K/Post-K computer Quantum fluctuation and excitation dynamics of quantum many-body system ☑ Constructions of theory and computation to accurately understand complex experiment results ☑ Predicting characteristics from the numerical calculations and proposing experiments for large quantum beam facilities 2

  3. Introduction  Quantum many-body systems N spin ½ system : degree of freedom is not N but 2 N !! E.g. N =100  2 100 ≈ 10 31 2 N vector 2 N × 2 N matrix 2 N × 2 N matrix  Physical quantities 3

  4. Introduction  The spirit of density matrix renormalization (DMRG) • Optimize the basis set to describe the state to be calculated • Use only m 2 bases instead of 2 N bases ( m 2 << 2 N ) N 2 2 m         c n n n n    n 1 n 1 S. R. White, PRL 69 , 2863 (1992). 4

  5. Introduction  How to choose the optimized bases superblock • m eigenstates with largest eigenvalues of the reduced density matrix of the superblock ground state system environment • Ground state of the superblock • m eigenstates with largest • Reduced density matrix  eigenvalues: (sys) i      SB SB N 2 2 m           i i , ij i j c n n n n    j n 1 n 1 m m     a i j   i , j   5   i 1 j 1

  6. Dynamical DMRG method E. Jeckelmann, Phys. Rev. B 66 , 045114 (2002) • Dynamical Correlation function 1 1   ˆ ˆ ˆ : arbitrary operator    † Im 0 A A 0 A ˆ        A 2 N H i 0 ˆ   : ground state 0 H 0 0 0 • Target state Kernel polynomial method 1 ˆ ˆ 0 , A 0 , A 0 1 ˆ 0 ˆ       A H i ˆ     H i 0   ˆ ˆ      1 w {2 Q ( ) iP ( )} ( P H A ) 0 l l l l  Basis set is optimized to describe these states l 0 Multi target procedure SS, M. Ito, J. Phys. Soc. Jpn. 76 , 054004 (2007). SS , T. Tohyama, PRB 82 , 195130 (2010). 6

  7. Massively parallel Dynamical DMRG Dynamical DMRG (https://www.r-ccs.riken.jp/labs/cms/DMRG/Dynamical_DMRG_en.html) Density Matrix Renormalization Group (DMRG) Kernel Polynomial method Massively Parallelization (KPM) Quantum Dynamics of strongly correlated quantum systems 7

  8. Efficiency FLOPS[%] Time[s] 32,000 100% 16,000 80% 8,000 60% 4,000 40% 2,000 Strong Elapse 20% 1,000 Weak Elapse Strong FLOPS% Weak FLOPS% 500 0% 48 192 768 3072 12288 49152 Process 7.8 PFLOPS on K computer 8 SS, S. Yunoki, T. Tohyama, A. Kuroda,Y. Kitazawa, K. Minami, and F. Shoji, in preparation

  9. Spin excitation dynamics on spin frustrated system  S=1/2 triangular lattice Heisenberg antiferromagnet Hamiltonian:    H J S S i j , i j   i j , • Typical spin frustrated system. • Ground state properties have been already well known.  i.e. uniform triangular lattice: three-sublattice 120 ° Néel ordered state. • The magnetic excitations are less well understood. 9

  10. Ba 3 CoSb 2 O 9 https://www.titech.ac.jp/news/2012/025500.html Co 2+ ion is located at the center of octahedra. The effective magnetic moment of Co 2+ ions with an octahedral environment can be described by the pseudospin-1/2. Magnetic Co 2+ ions forms a uniform triangular lattice. • Spin-1/2 XXZ model with small easy-plane anisotropy layer interlayer          z z S S S S H J ( S S ) J i j i j l m     i j , l m , J =1.67meV, Δ =0.046 , and J’ =0.12meV T. Suzuki, et al. Phys. Rev. Lett 110 , 267201 (2013). 10

  11. Magnetic Excitations (1) • Inelastic neutron scattering spectra of Ba 3 CoSb 2 O 9 J. Ma, et. al., Phys. Rev. Lett. 116 , 087201 (2016). S. Ito, et. al, Nat. Communi. 8 , 235 (2017). Magnetic excitations cannot be understood by linear spin wave theory. 11

  12. Magnetic excitation (2) S. Ito, et. al, Nat. Communi. 8 , 235 (2017) At present, theory cannot explain the high energy excitations continua observed in Ba 3 CoSb 2 O 9 . We investigate the magnetic excitations by the Dynamical DMRG. 12

  13. Model and computational conditions    J  • Hamiltonian: H J S S (We assume ) 1.67meV. i j   i j , S. Ito, et. al, Nat. Communi. 8 , 235 (2017) • lattice: 12 × 6 triangular lattice (cylindrical boundary condition) Periodic boundary Open boundary • DMRG truncation number m =6000 . • Half width at half maximum is 0.1 J . (Kernel polynomial method) 13

  14. Dynamical spin structure factor S( q ,  ) along Γ→ M DMRG ( J =1.67meV ) Experiment Ito, et al, Nat. Commun. 8 , 235 (’17) DMRG result ω(meV) q M Γ S( q ,  ) ω(meV) 14

  15. S( q ,  ): constant energy map DMRG ( J =1.67meV ) Experiment Ito, et al, Nat. Commun. 8 , 235 (’17) 1.8-2.0meV S( q ,  ) 6 36.00 33.75 31.50 4 29.25 27.00 24.75 2 22.50 20.25 q y 0 18.00 15.75 13.50 -2 11.25 9.000 6.750 -4 4.500 2.250 0.000 -6 -6 -4 -2 0 2 4 6 q x 2.6-2.8meV S( q ,  ) 6 36.00 33.75 31.50 4 29.25 27.00 24.75 2 22.50 20.25 q y 0 18.00 15.75 13.50 -2 11.25 9.000 6.750 -4 4.500 2.250 0.000 -6 -6 -4 -2 0 2 4 6 q x 3.4-3.6meV S( q ,  ) 6 36.00 33.75 31.50 4 29.25 27.00 24.75 2 22.50 20.25 q y 0 18.00 15.75 13.50 -2 11.25 9.000 6.750 -4 4.500 2.250 0.000 -6 -6 -4 -2 0 2 4 6 q x 15

  16. Summary  Our developed massively parallel dynamical DMRG shows high performance on K computer https://www.r-ccs.riken.jp/labs/cms/DMRG/Dynamical_DMRG_en.html  Spin dynamics of S=1/2 AFMHM on triangular lattice  In good qualitative agreement with experiments Dynamical DMRG Experiments  What is the nature of high energy excitations?? 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend