algebraic transversality
play

ALGEBRAIC TRANSVERSALITY ANDREW RANICKI (Edinburgh) - PDF document

ALGEBRAIC TRANSVERSALITY ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/ aa r Ho w do es one build ( n + 1)-dimensional manifolds from n -dimensional manifolds? 1 Fib re bundles over S . { Op en b o oks. {


  1. ALGEBRAIC TRANSVERSALITY ANDREW RANICKI (Edinburgh) http://www.maths.ed.ac.uk/ � aa r • Ho w do es one build ( n + 1)-dimensional manifolds from n -dimensional manifolds? 1 Fib re bundles over S . { Op en b o oks. { • Ho w do es one �nd n -dimensional submani- folds inside ( n + 1)-dimensional manifolds? Geometric transversalit y . { • What is algeb raic transversalit y? 1

  2. Time scale • 2- and 3-dimensional manifolds : 1900 { • Algeb raic va rieties : 1920 { • Algeb raic K - and L -theo ry : 1940 { • High-dimensional manifolds : 1960 { • 3- and 4-dimensional manifolds, TQFT : 1980 { 2

  3. Aims • 1 : Give homological criterion on a high- dimensional manifold M which is neces- sa ry and su�cient to decomp ose M as a 1 �b re bundle over S . Algeb raic K -theo ry of chain complexes. { • 2 : Lik ewise fo r op en b o ok decomp osition. Algeb raic L -theo ry of chain complexes { with P oinca r � e dualit y . 3

  4. 1 over S Fib re bundles • The mapping to rus of a map h : F → F is the identi�cation space T ( h ) = ( F × [0 , 1]) / ∼ with ( x, 0) ∼ ( h ( x ) , 1). • If F is a closed n -dimensional manifold and is an automo rphism then T ( h ) is a closed h ( n + 1)-dimensional manifold which is a 1 �b re bundle over S , with p rojection 1 T ( h ) → [0 , 1] / (0 ∼ 1) = S ; [ x, t ] → [ t ] . 4

  5. 1 Brief histo ry of �b re bundles over S • Stallings (1961) : a su�cient group- and homotop y-theo retic criterion fo r a 1 3-dimensional manifold M to �b re over S . • Bro wder and Levine (1964) ( π ( M ) = Z ) 1 and F a rrell (1970) (any π ( M )) : necessa ry 1 and su�cient conditions fo r an n -dimensional 1 manifold M to �b re over S , fo r n ≥ 6 : a �nitely dominated in�nite cyclic cover M , { the vanishing of the Whitehead to rsion { τ = τ ( M → T ( ζ )) ∈ Wh ( π ( M )) 1 with ζ : M → M generating covering translation. • Novik ov, F a rb er and P azhitnov (1981{ ) : 1 -valued Mo rse theo ry . S 5

  6. F redholm lo calization • A = ring. • A [ z, z − 1 ] = Laurent p olynomial extension. in A [ z, z − 1 • De�nition : A squa re matrix ω ] is F redholm if cok er ( ω ) is a f.g. p rojective A -mo dule. • 1 − z Example : ω = is F redholm. in A [ z, z − 1 • De�nition : � = F redholm matrices ]. � − 1 A [ z, z − 1 ] = the noncommutative lo cal- of A [ z, z − 1 ization ] inverting each ω ∈ �. • Example : if A = K is a �eld then � − 1 A [ z, z − 1 ] = K ( z ) is the function �eld. (� − 1 A [ z, z − ( A [ z, z − 1 1 • K ]) = K ]) ⊕ Aut ( A ) . 1 1 0 6

  7. Recognizing �b re bundles homologically • M = compact n -dimensional manifold with in�nite cyclic cover M , such that ( M ) = π × Z , π ( M ) = π . π 1 1 , A [ z, z − 1 • A = Z [ π ] ] = Z [ π × Z ] . • Theo rem 1 M is �nitely dominated if � − 1 A [ z, z − 1 and only if H ∗ ( M ; ]) = 0. • Theo rem 2 If n ≥ 6 then M is a �b re 1 bundle over S if and only if M is �nitely � − 1 A [ z, z − 1 dominated with ]-co e�cient Reidemeister-Whitehead to rsion (= F a rrell obstruction) is 0, that is � − 1 A [ z, z − 1 τ ( M ; ]) = 0 (� − 1 A [ z, z − 1 ∈ K ]) / ( {± ( π × Z ) } ⊕ Aut ( A )) 1 0 = Wh ( π × Z ) . 7

  8. Op en b o oks • The relative mapping to rus of an automo rphism of an n -dimensional manifold with b ounda ry h : ( F, ∂F ) → ( F, ∂F ) with h | ∂F = id . is the closed ( n + 1)-dimensional manifold 2 . t ( h ) = T ( h ) ∪ ∂F × S 1 ∂F × D • A closed ( n + 1)-dimensional manifold has an op en b o ok decomp osition if M M = t ( h ) fo r some h . 1 ⊂ S n : S n − +1 • Example : fo r a �b red knot k S n +1 = t ( h ), with h the mono dromy of the surface F n ⊂ S n ( S n − +1 1 Seifert , ∂F = k ). 1 • Note : op en b o ok = �b re bundle over S if ∂F = ∅ . 8

  9. Brief histo ry of op en b o oks • Alexander (1923) : every 3-dimensional manifold has an op en b o ok decomp osition. • r n ≥ Wink elnk emp er (1972) : fo 7 a simply- connected n -dimensional manifold has an op en b o ok decomp osition if and only if 0 ∈ Z . signature( M ) = • Quinn (1979) : non-simply-connected obstruction theo ry in dimensions ≥ 5 to the existence and uniqueness of op en b o ok decomp ositions : asymmetric Witt obstruction in { even dimensions, no obstruction in o dd dimensions. { 9

  10. Recognizing op en b o oks homologically • M = compact n -dimensional manifold. , A [ z, z − 1 1 • A ( M × S = Z [ π ( M )] ] = Z [ π )] . 1 1 • Theo rem 3 If n ≥ 6 then M has an op en b o ok decomp osition if and only � − 1 A [ z, z − 1 if the ]-co e�cient symmetric signature (= Quinn op en b o ok obstruction) is 0 σ ∗ � − 1 A [ z, z − 0 ∈ L n (� − 1 A [ z, z − 1 1 ( M ; ]) = ]) . • dimension ≥ A manifold of 6 has an op en b o ok decomp osition if and only if it is π - 1 1 b o rdant to a �b re bundle over S . 10

  11. Algeb raic K -theo ry transversalit y • Co dimension 1 geometric transversalit y : every in�nite cyclic cover of a compact { manifold has a compact fundamental domain. • Co dimension 1 algeb raic transversalit y : free A [ z, z − 1 every �nite f.g. ]-mo dule { chain complex C has an algeb raic fun- damental domain, with a chain equiva- lence [ z, z − [ z, z − 1 1 ( f − zg : D ] → E ]) C fo r A -mo dule chain maps f, g : D → E . (Higman (1940), W aldhausen (1972)) ( A [ z, z − 2 � 1 • K ( A ) ⊕ K ( A ) ⊕ ]) = K Nil ( A ) . 1 1 0 0 (Bass, Heller & Sw an (1965)) 11

  12. Algeb raic P oinca r � e complexes • A = ring with involution a → a . • An n -dimensional algeb raic P oinca r � e complex over A is an A -mo dule chain complex C with a symmetric chain equivalence φ ≃ φ ∗ : C n −∗ = Hom A ( C, A ) n −∗ → C ) ∼ y H n −∗ inducing dualit ( C = H ∗ ( C ). • Simila rly fo r pairs, cob o rdism. • L n ( A ) = cob o rdism group of n -dimensional algeb raic P oinca r � e complexes over A . • Simila r description of W all surgery obstruc- tion groups L n ( A ), using extra quadratic structure. Di�erence in 2-p rima ry to rsion only . 12

  13. Symmetric signature • The symmetric signature of an n -dimensional P oinca r � e space M is σ ∗ ) ∈ L n ( � ( M ) = ( C M ) , φ ( Z [ π ( M )]) 1 with � the universal cover of M and M = [ M ] ∩ − (Mishchenk o (1974)). φ • Homotop y inva riant. • Bo rdism inva riant σ ∗ ) → L n ; M → σ ∗ : � n ( K ( Z [ π ( K )]) ( M ) . 1 • Example : fo r n = 4 k σ ∗ 4 k ( M ) = signature( M ) ∈ L ( Z ) = Z . 13

  14. raic L Algeb -theo ry transversalit y • The asymmetric L -groups of a ring with involution A a re the cob o rdism groups of pairs ( C, λ ) with C an n -dimensional f.g. free A -mo dule chain complex and : C n −∗ → C λ a chain equivalence. • The asymmetric L -groups a re 0 fo r o dd n . • Theo rem 4 The symmetric L -groups L n (� − 1 A [ z, z − 1 ]) of F redholm lo calization = z − 1 (with z ) a re isomo rphic to the asymmetric L -groups of A . 14

  15. Manifold transversalit y • T rue. • The b o rdism group � n ( X ) of maps M n manifold → X = n -dimensional is a generalized homology theo ry . • K� unneth fo rmula 1 � n ( K × S ) = � n ( K ) ⊕ � n − ( K ) 1 • Co dimension 1 transversalit y: every map : M n → K × S 1 f homotopic to one with N n − = f − 1 1 pt . ) ⊂ M n ( K × a co dimension 1 submanifold. • An in�nite cyclic cover of a compact man- ifold has a compact manifold fundamental domain. 15

  16. P oinca r � e space transversalit y • F alse in general { same obstructions as fo r algeb raic P oinca r � e complex transversalit y . • A �nite n -dimensional P oinca r � e space P is a �nite CW complex with ) ∼ H n −∗ ( P = H ∗ ( P ) . � h • The b o rdism group ( X ) of maps P → X n is not a generalized homology theo ry . � p � h � h 1 • ( K × S ) = ( K ) ⊕ ( K ) n n n − 1 � p with ( K ) the b o rdism group of �nitely ∗ dominated P oinca r � e spaces with map to K . • An in�nite cyclic cover of a �nite P oinca r � e space has a �nitely dominated fundamental domain. 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend