advancements in a gpu monte carlo simulator for
play

Advancements in a GPU Monte Carlo simulator for radiotherapy 2016 - PowerPoint PPT Presentation

Advancements in a GPU Monte Carlo simulator for radiotherapy 2016 GPU Technology Conference Shogo Okada <shogo@post.kek.jp> Koichi Murakami <koichi.murakami@kek.jp> Nick Henderson <nwh@stanford.edu> (speaking)


  1. 
 Advancements in a GPU Monte Carlo simulator for radiotherapy 2016 GPU Technology Conference 
 Shogo Okada <shogo@post.kek.jp> Koichi Murakami <koichi.murakami@kek.jp> Nick Henderson <nwh@stanford.edu> (speaking)

  2. Collaboration • Makoto Asai, SLAC • Joseph Perl, SLAC • Andrea Dotti, SLAC • Takashi Sasaki, KEK • Akinori Kimura, Ashikaga Institute of Technology • Margot Gerritsen, ICME, Stanford

  3. Big Picture

  4. ( ~ p, k ) x, ~ k ∈ { γ , e − , e + , . . . } Goal: record energy deposited in material

  5. LISA Geant4 • Extensive toolkit for simulation of particles traveling through matter ATLAS • Supports wide variety of physics models, geometries, and materials • Users can add their own • Used in numerous and diverse application areas • high energy physics • medical physics • spacecraft • semiconductor devices • biology research gMocren

  6. MPEXS • Adaptation of core Geant4 algorithm to CUDA • Design inspired by structure of Geant4 in terms of modularization and separation of conerns • Low energy electromagnetic physics models suitable for simulation of X-ray radiotherapy • Model material as water with variable density, a common practice in medical physics for X-ray therapy • Supported particles: photon, electron, positron (easily extended)

  7. MPEXS — algorithm details • Each CUDA thread tracks an active particle • Physics processes store secondary particles in thread-local stacks • Energy is atomically deposited to a global dose array (via atomicAdd )

  8. MPEXS — validation & performance

  9. Dose Distribution of slab phantoms z y Verification for Dose Distribution - phantom size : 30.5 x 30.5 x 30 cm 
 - voxel size : 5 x 5 x 2 mm 
 - field size : 10 cm 2 
 - SSD : 100 cm - slab materials : air (1) water 
 (2) lung 
 (3) bone source Beam particle and its initial kinetic energy: 
 density - electron with 20MeV 
 water 1.0 g/cm 3 - photon with 6MV Linac 
 lung 0.26 g/cm 3 - photon with 18MV Linac bone 1.85 g/cm 3 air 0.0012 g/cm 3

  10. Comparison of depth dose for γ 6MV (1) water depth dose distribution -3 10 × dose (Gy) G4 0.3 G4CU 0.25 − G4 v9.6.3 � 
 0.2 − G4CU 0.15 • x-axis: z-direction (cm) 0.1 • y-axis: dose (Gy) 0.05 residual 0.2 0 5 10 15 20 25 30 0.1 • residual = (G4CU − G4) / G4 0 -0.1 -0.2 0 5 10 15 20 25 30 depth (cm) (2) lung (3) bone depth dose distribution depth dose distribution -3 -3 10 × 10 × 0.07 dose (Gy) dose (Gy) G4 G4 0.3 0.06 G4CU G4CU 0.05 0.25 0.04 0.2 0.03 0.15 lung bone 0.02 0.1 0.01 residual 0.2 residual 0 5 10 15 20 25 30 0.2 0 5 10 15 20 25 30 0.1 0.1 0 0 -0.1 -0.1 -0.2 -0.2 0 5 10 15 20 25 30 0 5 10 15 20 25 30 depth (cm) depth (cm)

  11. Comparison of depth dose for γ 18MV (1) water depth dose distribution -3 10 × dose (Gy) G4 0.12 G4CU 0.1 − G4 v9.6.3 � 
 0.08 − G4CU 0.06 • x-axis: z-direction (cm) 0.04 • y-axis: dose (Gy) 0.02 residual 0.2 0 5 10 15 20 25 30 0.1 • residual = (G4CU − G4) / G4 0 -0.1 -0.2 0 5 10 15 20 25 30 depth (cm) (2) lung (3) bone depth dose distribution depth dose distribution -3 10 -3 × × 10 dose (Gy) dose (Gy) G4 G4 0.12 0.12 G4CU G4CU 0.1 0.1 0.08 0.08 0.06 0.06 lung bone 0.04 0.04 0.02 0.02 residual 0.2 residual 0.2 0 5 10 15 20 25 30 0 5 10 15 20 25 30 0.1 0.1 0 0 -0.1 -0.1 -0.2 -0.2 0 5 10 15 20 25 30 0 5 10 15 20 25 30 depth (cm) depth (cm)

  12. Comparison of depth dose for e- 20MeV (1) water depth dose distribution -3 10 × dose (Gy) 0.18 dose (Gy) G4 -4 10 G4CU 0.16 0.14 -5 − G4 v9.6.3 � 
 10 0.12 0.1 − G4CU -6 10 log scale 0.08 0.06 0 5 10 15 20 25 30 depth (cm) • x-axis: z-direction (cm) 0.04 0.02 • y-axis: dose (Gy) 0 residual 0.2 0 5 10 15 20 25 30 0.1 • residual = (G4CU − G4) / G4 0 -0.1 -0.2 0 5 10 15 20 25 30 depth (cm) (2) lung (3) bone depth dose distribution depth dose distribution -3 10 × -3 × 10 dose (Gy) dose (Gy) dose (Gy) dose (Gy) 0.18 G4 G4 0.18 -4 -4 10 10 G4CU G4CU 0.16 0.16 log scale log scale 0.14 0.14 -5 10 -5 10 0.12 0.12 0.1 0.1 -6 10 -6 10 0.08 0.08 0 5 10 15 20 25 30 0 5 10 15 20 25 30 lung bone 0.06 depth (cm) depth (cm) 0.06 0.04 0.04 0.02 0.02 0 residual 0 0.2 0 5 10 15 20 25 30 residual 0.2 0 5 10 15 20 25 30 0.1 0.1 0 0 -0.1 -0.1 -0.2 -0.2 0 5 10 15 20 25 30 0 5 10 15 20 25 30 depth (cm) depth (cm)

  13. Computation Time Performance 185~250 times speedup against single-core G4 simulation!! GPU: e- beam with 20MeV Tesla K20c (Kepler architecture) - 2496 cores, 706 MHz - (1) water (2) lung (3) bone 4096 x 128 threads - G4 
 # of primaries 1.84 1.87 1.65 - [msec/particle] 50M particles -> e- 20MeV - G4CU 
 500M particles -> γ 6MV, 18MV - 0.00881 0.00958 0.00885 [msec/particle] × speedup factor 
 CPU: 
 208 195 193 - Xeon E5-2643 v2 3.50 GHz ( = G4 / G4CU ) γ beam with 6MV γ beam with 18MV (1) water (2) lung (3) bone (1) water (2) lung (3) bone G4 
 0.780 0.822 0.819 0.803 0.857 0.924 [msec/particle] G4CU 
 0.00336 0.00331 0.00341 0.00433 0.00425 0.00443 [msec/particle] × speedup factor 
 232 248 240 185 201 208 ( = G4 / G4CU )

  14. MPEXS — key challenges • main challenge: thread divergence • other issues: • interpolation tables • memory bandwidth • many kernel launches?

  15. MPEXS-DNA

  16. Geant4-DNA / MPEXS-DNA • Geant4-DNA: an extension of Geant4 for DNA scale http://geant4-dna.org particle 
 simulation (Microdosimetry simulation) • Electromagnetic interactions ( down to meV ) • Radiolysis of water • Estimate DNA damages using energy loss • MPEXS-DNA — An extension of MPEXS to DNA Physics • Up to 280 times faster than single-CPU core simulation • Collaborators: CENBG (France), KEK (Japan) 1. Physical Phase 2. Chemical Phase Diffusion and reactions for chemical species • Simulation of physical interactions • Calculating dose distributions ∅ 10 nm • Generating chemical species including radical, ions, … EM shower in DNA Chromatine fiber (constituent of chromosomes)

  17. Use cases of microdosimetry simulation • Estimation of effects on human health by chronic radiation exposure • Medical diagnosis, Arline crew, Astronauts in space mission, … • Understanding mechanisms of radiation therapy Medical diagnosis Airline crew Space missions Radiation therapy

  18. DNA Physics Processes Hydrogen 
 Helium atoms 
 Particles Electrons Protons atoms (He ++ , He + , He 0 ) 9 eV - 10 keV 
 Elastic 
 Uehara 100 eV - 1 MeV 
 100 eV - 10 MeV 
 10 keV - 1 MeV Hoang Hoang scattering Champion 10 eV - 500 keV 
 10 eV - 10 keV 
 E 2 Miller Green 
 1 keV - 400 MeV 
 Emfietzoglou 10 eV - 500 keV 
 Physics Processes Excitation 500 keV - 100 MeV 
 Miller Green 10 keV - 1 MeV Miller Green E 1 Born Born e - Charge 100 eV - 10 MeV 
 1 keV - 400 MeV 
 100 eV - 10 MeV 
 — Dingfelder Dingfelder Dingfelder p change 10 eV - 10 keV 
 100 eV - 500 keV 
 H atom -> p Emfietzoglou Rudd 
 100 eV - 100 MeV 
 1 keV - 400 MeV 
 Ionization 10 keV - 1 MeV 500 keV - 100 MeV 
 Rudd Rudd Born Born p e - Vibrational 
 2 - 100 eV 
 Δ E — — — Michaud et al. excitation Disociative 
 4 - 13 eV 
 — — — ( ( ( Melton attachment ( ( ( AB + e - -> AB - -> A + B -

  19. An issue of DNA Physics Process The difference in energy loss process (EM vs DNA) Standard EM Physics Standard EM Physics Bethe-Bloch formula • Continues process • Calculating average energy loss at each 
 2 ln 2 m e c 2 β 2 γ 2 T max  1 � − dE dx = Kz 2 Z − β 2 − δ 1 step with the Bethe-Bloch formula β 2 I 2 A 2 Δ x 1 • No secondaries are generated Δ E 4 Δ x 3 • Discrete process Δ E 1 Δ x 4 Δ x 2 Δ E 3 • Generating a secondary if energy loss 
 is above threshold Δ E 2 DNA physics • Handling as a discrete process DNA Physics • Particles lose their kinetic energy in 
 n o i ionization and excitation processes t a t i c x Δ E 5 Δ E 3 Δ E 1 • Ionization process has no energy e threshold 
 n o -> Generating large amount of 
 i t Δ E 4 a Δ E 6 z Δ E 2 i n secondary particles 
 o i -> Need longer time for tracking all particles

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend