adjoint estimation of the forecast impact of observation
play

Adjoint Estimation of the Forecast Impact of Observation Error - PowerPoint PPT Presentation

Adjoint Estimation of the Forecast Impact of Observation Error Correlations Derived from A Posteriori Covariance Diagnosis DACIAN N. DAESCU Portland State University, Portland, OR ROLF H. LANGLAND NRL Marine Meteorology Division, Monterey, CA 6


  1. Adjoint Estimation of the Forecast Impact of Observation Error Correlations Derived from A Posteriori Covariance Diagnosis DACIAN N. DAESCU Portland State University, Portland, OR ROLF H. LANGLAND NRL Marine Meteorology Division, Monterey, CA 6 th WMO Symposium on Data Assimilation – 2013

  2. Outline A posteriori NRL NAVDAS-AR/NAVGEM error covariance diagnosis T319L50 resolution (Desroziers et al. 2001+) 4D-VAR, 6-hour window Radiance σ 2 o estimates Time period: spatial obs error 2012 10/15-11/01, all UTC correlations interchannel Merging information is Adjoint-DAS forecast error necessary sensitivity (Daescu&Langland 2013) feasible error covariance sensitivity a priori guidance & forecast SYNERGISTIC APPROACH TO impact estimates ERROR COVARIANCE TUNING

  3. Error Covariance Diagnosis: x a = x b + K [ y − h ( x b )] � b ) T � � � − 1 � � HBH T + R HB t H T + R t � d o a ( d o R = E = R � b ) T � = HBH T � � − 1 � � HBH T + R HB t H T + R t H � BH T d a b ( d o = E Innovation error covariance consistency valid for any ( R , B ) BH T + � R = HB t H T + R t H � Error covariance estimates valid if and only if BH T = HB t H T ⇔ � R = R t ⇔ HK = HK t H � What is the analysis impact/benefit of the ( � R , � B ) iteration? BH T � � − 1  BH T + � Hx a = H � H � H � H �  = x a K R  HBH T � � − 1 HBH T + R =  H = I ⇒ x a = �  x a = HK

  4. � � x a ( x b , B , y , R ) Adjoint-DAS Forecast Error Sensitivity e Which DAS components contribute most to forecast uncertainties? o Identify high-impact Σ R y error covariance o parameters C e(x a ) K x a Provide the steepest b Σ descent directions M T B x b −∇ R e, −∇ B e b C A priori guidance to the gain in the forecast skill of ( ˜ R , ˜ B ) � ∂e � � ∂e � e [ x a ( ˜ R , ˜ B )] − e [ x a ( R , B )] ≈ ∂ R , δ R + ∂ B , δ B � �� � p × p n × n gain The optimal corrections δ R ⋆ , δ B ⋆ not provided

  5. Forecast ( R , B ) -sensitivity: x a = x b + K [ y − h ( x b )] Daescu and Langland (2013) � � HBH T + R y − h ( x b ) = ( solver ) z x b + BH T z x a = ( post − multiplication ) Background sensitivity † Observation sensitivity ∂ y = K T ∂e ∂e ∂ x b = ∂e ∂e ∂ x a − H T ∂e ∂ x a ∂ y Forecast R -sensitivity Forecast B -sensitivity � � T ∂ R = − ∂e ∂e ∂ B = ∂e ∂e ∂ yz T H T z ∂ x b δ R -impact estimation δ B -impact estimation � � T ∂e δe ≈ − ( δ R z ) T ∂e δ B H T z δe ≈ ∂ x b ∂ y

  6. 1 i ) 2 = A posteriori σ o -estimates: (˜ σ o [ y − h ( x a )] T i [ y − h ( x b )] i nobs i AMSU-A IASI - 51 channels The estimates ˜ σ o are much lower than the assigned σ o In consensus with estimates at other NWP centers Will forecasts benefit from a ˜ σ o -specification?

  7. Forecast error σ 2 o -weight sensitivity guidance: ( s o i ) σ 2 o 24-hr moist total energy error norm, e ( x a ) = � x a f − x a v � 2 E AMSU-A IASI Guidance to maximize the forecast impact of σ o -tuning Reduce assigned σ o for AMSU-A channels 5-8 Inflate assigned σ o for most IASI channels (error correlations !?)

  8. OSE validation of σ o -tuning impact: AMSUA, IASI, AIRS self-validation: e(EXP) - e(CTL) radiosonde T: EXP/CTL mean J o ( x b EXP ) − J o ( x b CT L ) σ o = 1 EXP1: AMSUA Ch 5-8 ˜ 2 σ o EXP2: IASI ˜ σ o = 2 σ o EXP3: σ o = 1 AMSUA Ch 5-8 ˜ 2 σ o IASI, AIRS ˜ σ o = 2 σ o

  9. � � � � IASI spatial error correlations � [ y − h ( x a )] i y − h ( x b ) R ( r ) = E j For each channel assume C ( ǫ o i , ǫ o j ) = φ ( dist { y i , y j } ) d 1 < dist ( y i , y j ) < d 2 25Km separation bin

  10. A priori forecast error � R -impact estimation: IASI

  11. o - and � σ 2 A priori ˜ R -impact estimation: IASI

  12. IASI inter-channel error correlations diagnosis/impact � � � R ( i, j ) = E [ y − h ( x a )] ch # i [ y − h ( x b )] ch # j forecast error impact error correlation estimates A priori forecast impact assessment of the error correlations � ∂e � R covariance model: e ( ˜ ˜ R ) − e ( R ) ≈ ∂ R , δ R

  13. Summary & Research Prospects Design of improved error covariance models A posteriori error covariance consistency diagnosis/estimates Adjoint-DAS sensitivity & a priori guidance to covariance tuning impact Merging information is both necessary and feasible Future research & adjoint-DAS applications Adaptive B -optimization, hybrid ensemble/4D-Var Model error covariance Q -diagnosis/sensitivity/impact There is a need for improved validation procedures Forecast error metric e , verification state x v selection

  14. Summary & Research Prospects Design of improved error covariance models A posteriori error covariance consistency diagnosis/estimates Adjoint-DAS sensitivity & a priori guidance to covariance tuning impact Merging information is both necessary and feasible Future research & adjoint-DAS applications Adaptive B -optimization, hybrid ensemble/4D-Var Model error covariance Q -diagnosis/sensitivity/impact There is a need for improved validation procedures Forecast error metric e , verification state x v selection

  15. Thank you!

  16. Thank you!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend