active dumbbells
play

Active dumbbells Leticia F. Cugliandolo Universit Pierre et Marie - PowerPoint PPT Presentation

Active dumbbells Leticia F. Cugliandolo Universit Pierre et Marie Curie Sorbonne Universits Institut Universitaire de France leticia@lpthe.jussieu.fr www.lpthe.jussieu.fr/ leticia Work in collaboration with D. Loi & S. Mossa


  1. Active dumbbells Leticia F. Cugliandolo Université Pierre et Marie Curie Sorbonne Universités Institut Universitaire de France leticia@lpthe.jussieu.fr www.lpthe.jussieu.fr/ ˜ leticia Work in collaboration with D. Loi & S. Mossa (2007-2009) and G. Gonnella, G.-L. Laghezza, A. Lamura, A. Mossa & A. Suma (2013-2015) Kyoto, Japan, August 2015

  2. Motivation & goals Active dumbbell system • Reason for working with this model • Main properties of the model - phase diagram • Translational and rotational collective motion • Dynamics of tracers in complex environments revisited. • Effective temperatures out of equilibrium

  3. Active dumbbell Diatomic molecule - toy model for bacteria Escherichia coli - Pictures borrowed from internet.

  4. Bacteria colony Active matter Rabani, Ariel and Be’er 13

  5. Active dumbbells Diatomic molecule Two spherical atoms with diameter σ d and mass m d Massless spring modelled by a finite extensible non-linear elastic force bet- k r ween the atoms F fene = − with an additional repulsive contribution 1 − r 2 /r 2 0 (WCA) to avoid colloidal overlapping. Polar active force along the main molecular axis F act = F act ˆ n . Purely repulsive interaction between colloids in different molecules. Langevin modelling of the interaction with the embedding fluid: isotropic viscous forces, − γ v i , and independent noises, η i , on the beads. Directional motion (active) and effective torque (noise)

  6. Active dumbbells Control parameters Number of dumbbells N and box volume S in two dimensions: φ = πσ 2 d N packing fraction 2 S Energy scales: Active force work F act σ d Pe = 2 F act σ d Péclet number k B T thermal energy k B T Active force F act σ d /γ Re = m d F act Reynolds number . viscous force γσ 2 σ d γ 2 d /m d We keep the parameters in the harmonic (fene) and Lennard-Jones (repulsive) potential fixed. Stiff molecule limit: vibrations frozen. We study the φ , F act and k B T dependencies. Pe ∈ [0 , 40] , Re < 10 − 2

  7. Active dumbbells Phase segregation Fixed packing fraction ϕ and fixed activity F act , vary k B T k B T = 0 . 01 k B T = 0 . 003 k B T = 0 . 001 Mixed Large density fluctuations Segregation Pe = 2 F act σ d increases → k B T Gonnella, Lamura & Suma 13

  8. Active dumbbells Phase diagram : from the distribution of local dumbbell density 1.0 0.8 0.6 φ 0.4 0.2 0.0 0 50 100 150 200 Pe Mechanism for aggregation: note the head-tail alignment in the cluster.

  9. Active dumbbells Phase diagram 1.0 0.8 0.6 φ 0.4 0.2 0.0 0 50 100 150 200 Pe Focus on the dynamics in the homogeneous phase ; vary φ and Pe.

  10. Single molecule limit Active force switched-on, F act ̸ = 0 ballistic → diffusive → ballistic → diffusive • The dynamics is accelerated by F act and a new ballistic regime in the centre- t ∗ = 16 t a / Pe 2 of-mass translational motion appears at t a = γσ 2 • Ballistic to diffusive crossover of the cm motion at d / (2 k B T ) Note that t a → ∞ at k B T → 0 . D A = k B T/ (2 γ ) (1 + Pe 2 ) • The diffusion constant is 10 0 Pe=0 Pe=2 Pe=20 Pe=40 10 −1 cm 〉 /4t 〈∆ r 2 10 −2 10 −3 10 −1 10 0 10 1 10 2 10 3 10 4 t t I t a ⟨ [ r cm ( t + t 0 ) − r cm ( t 0 )] 2 ⟩

  11. Single molecule limit Active force switched on, F act ̸ = 0 • The dynamics is accelerated by F act and a new ballistic regime in the centre- t ∗ = 16 t a / Pe 2 of-mass translational motion appears at t a = γσ 2 • Ballistic to diffusive crossover of the cm motion at d / (2 k B T ) Note that t a → ∞ at k B T → 0 . • The rotational motion is not affected by the longitudinal active force. 10 0 10 −1 Pe=0 Pe=0 Pe=2 Pe=2 Pe=20 Pe=20 Pe=40 Pe=40 10 −1 cm 〉 /4t 〈∆θ 2 〉 /2t 10 −2 〈∆ r 2 10 −2 10 −3 10 −3 10 −1 10 0 10 1 10 2 10 3 10 4 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 t t t I t a t I t a ⟨ [ r cm ( t + t 0 ) − r cm ( t 0 )] 2 ⟩ ⟨ [ θ ( t + t 0 ) − θ ( t 0 )] 2 ⟩

  12. Finite density system Centre-of-mass mean-square displacement ⟨ ∆ r 2 cm ⟩ = ⟨ [ r cm ( t + t 0 ) − r cm ( t 0 )] 2 ⟩ 10 −1 10 −1 10 −2 10 −2 Pe=2 Pe=40 cm 〉 /4t cm 〉 /4t 10 −3 10 −3 〈∆ r 2 〈∆ r 2 φ =0 φ =0 0.1 0.1 0.2 0.2 10 −4 10 −4 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 10 −5 10 −5 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 t t t I t a t ∗ t I t ∗ t a Pe and φ effect

  13. Finite density system Angular mean-square displacement ⟨ ∆ θ 2 ⟩ = ⟨ [ θ ( t + t 0 ) − θ ( t 0 )] 2 ⟩ 10 −1 10 −2 Pe=2 Pe=40 10 −2 〈∆θ 2 〉 /2t 〈∆θ 2 〉 /2t 10 −3 10 −3 φ =0.1 φ =0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 10 −4 10 −4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 t t t I t a t ∗ t I t ∗ t a Pe and φ effect

  14. Diffusion constants ⟨ ∆ r 2 cm ⟩ ≃ 2 dD A t Translational diffusion Pe=4 F act =0.1 T=0.05 Pe=4 F act =0.5 T=0.25 Pe=4 F act =1 T=0.5 0.125 a 1 =-0.76 a 2 =-0.41 diminishes at D A (F act ,T, φ )/k B T 0.1 increasing density 0.075 at all Pe 0.05 increases at 0 0.2 0.4 0.6 φ increasing Pe Pe=40 F act =0.1 T=0.005 Pe=40 F act =0.5 T=0.025 Pe=40 F act =1 T=0.05 8 a 1 =-2.40 a 2 =1.66 at fixed φ D A (F act ,T, φ )/k B T 6 Proposals for φ , Pe dependence 4 Similar to what observed for 2 0 0.2 0.4 0.6 e.g., Janus particles in H 2 O 2 φ Zheng et al 13 D A k B T = f A ( Pe , φ )

  15. Diffusion constants ⟨ ∆ θ 2 ⟩ ≃ 2 D R t 0.6 Pe=4 F act =0.1 T=0.05 Pe=4 F act =0.5 T=0.25 Pe=4 F act =1 T=0.5 0.4 D R (T, φ )/k B T 0.2 0 0 0.2 0.4 0.6 φ Rotational diffusion 0.6 enhanced at 0.4 D R (T, φ )/k B T increasing density 0.2 for large Pe Pe=40 F act =0.1 T=0.005 Pe=40 F act =0.5 T=0.025 Pe=40 F act =1 T=0.05 0 Incipient clusters 0 0.2 0.4 0.6 φ D R k B T = f R ( Pe , φ )

  16. Fluctuations Translational motion in the active-force driven regimes p (∆ x ) = p ( x cm ( t + t 0 ) − x cm ( t 0 )) 10 1 10 1 Pe=40 Pe=40 20 20 10 0 10 0 4 4 2 2 10 -1 10 -1 σ x P( ∆ x) σ x P( ∆ x) 10 -2 10 -2 10 -3 10 -3 10 -4 10 -4 10 -5 10 -5 10 -6 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 ∆ x/ σ x ∆ x/ σ x t ∗ < t < t a t a < t 10 −1 10 −1 ϕ = 0 . 1 10 −2 Pe=2 10 −2 Pe=40 cm 〉 /4t cm 〉 /4t σ x = ⟨ ∆ x 2 ⟩ 1 / 2 10 −3 10 −3 〈∆ r 2 〈∆ r 2 φ =0 φ =0 0.1 0.1 10 −4 0.2 10 −4 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 Non-Gaussian at high Pe 0.7 0.7 10 −5 10 −5 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 t t

  17. Fluctuations Translational motion in the active-force driven regimes p (∆ x ) = p ( x cm ( t + t 0 ) − x cm ( t 0 )) 10 1 10 1 Pe=40 Pe=40 20 20 10 0 10 0 4 4 2 2 10 -1 10 -1 σ x P( ∆ x) σ x P( ∆ x) 10 -2 10 -2 10 -3 10 -3 10 -4 10 -4 10 -5 10 -5 10 -6 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 ∆ x/ σ x ∆ x/ σ x t ∗ < t < t a t a < t Janus particles in H 2 O 2 Same double peak at high Pe Zheng et al. 13

  18. Fluctuations Translational motion in the active-force driven regimes p (∆ x ) = p ( x cm ( t + t 0 ) − x cm ( t 0 )) 10 1 10 1 φ =0.01 φ =0.01 0.1 0.1 III IV 10 0 10 0 0.3 0.3 0.5 0.5 0.7 0.7 10 -1 10 -1 σ x P( ∆ x) σ x P( ∆ x) 10 -2 10 -2 10 -3 10 -3 10 -4 10 -4 10 -5 10 -5 -4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4 ∆ x/ σ x ∆ x/ σ x t ∗ < t < t a t a < t 10 −1 Pe = 40 10 −2 Pe=40 cm 〉 /4t σ x = ⟨ ∆ x 2 ⟩ 1 / 2 10 −3 〈∆ r 2 φ =0 0.1 10 −4 0.2 0.3 0.4 0.5 0.6 Non-Gaussian & exponentail tails in III 0.7 10 −5 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 t

  19. Fluctuations Translational motion in super-cooled liquids and granular matter G s ( r ) = N − 1 ∑ N i =1 ⟨ δ ( r − | ⃗ r i ( t + t 0 ) − ⃗ r i ( t 0 ) | ) ⟩ van Hove correlation function delay-time shorter than the structural relaxation time t < t α σ = ⟨ ∆ r 2 ⟩ 1 / 2 Exponential tails Chaudhuri, Berthier & Kob 07

  20. Fluctuations Rotational motion in the active-force driven regimes p (∆ θ ) = p ( θ ( t + t 0 ) − θ ( t 0 )) 10 0 10 0 Pe=40 Pe=40 20 20 4 4 10 -1 10 -1 2 2 10 -2 10 -2 σ θ P( ∆θ ) σ θ P( ∆θ ) 10 -3 10 -3 10 -4 10 -4 10 -5 10 -5 -4 -2 0 2 4 -4 -2 0 2 4 ∆θ / σ θ ∆θ / σ θ t ∗ < t < t a t a < t 10 −1 10 −2 ϕ = 0 . 1 Low density Pe=2 Pe=40 10 −2 〈∆θ 2 〉 /2t 〈∆θ 2 〉 /2t 10 −3 σ θ = ⟨ ∆ θ 2 ⟩ 1 / 2 10 −3 φ =0.1 φ =0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.5 0.5 0.6 0.6 0.7 0.7 Gaussian 10 −4 10 −4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 t t

  21. Fluctuations Rotational motion in the active-force driven regimes p (∆ θ ) = p ( θ ( t + t 0 ) − θ ( t 0 )) 10 0 10 0 φ =0.01 φ =0.01 0.1 0.1 III IV 0.3 0.3 10 -1 10 -1 0.5 0.5 0.7 0.7 10 -2 10 -2 σ θ P( ∆θ ) σ θ P( ∆θ ) 10 -3 10 -3 10 -4 10 -4 10 -5 10 -5 -4 -2 0 2 4 -4 -2 0 2 4 ∆θ / σ θ ∆θ / σ θ t ∗ < t < t a t a < t 10 −2 Pe = 40 Pe=40 〈∆θ 2 〉 /2t σ θ = ⟨ ∆ θ 2 ⟩ 1 / 2 10 −3 φ =0.1 0.2 0.3 0.4 0.5 Exponential tails for φ ≥ 0 . 7 0.6 0.7 10 −4 10 −3 10 −2 10 −1 10 0 10 1 10 2 10 3 10 4 t

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend