a type theory for cartesian closed bicategories
play

A type theory for cartesian closed bicategories Marcelo Fiore and - PowerPoint PPT Presentation

A type theory for cartesian closed bicategories Marcelo Fiore and Philip Saville* University of Cambridge Department of Computer Science and Technology * now at University of Edinburgh School of Informatics 9th July 2019 1 / 25 Cartesian


  1. A type theory for cartesian closed bicategories Marcelo Fiore and Philip Saville* University of Cambridge Department of Computer Science and Technology * now at University of Edinburgh School of Informatics 9th July 2019 1 / 25

  2. Cartesian closed bicategories Cartesian closed categories ‘up to isomorphism’. Examples: - Generalised species and cartesian distributors particularly for applications in higher category theory (Fiore, Gambino, Hyland, Winskel), (Fiore & Joyal) - Categorical algebra (operads) (Gambino & Joyal) - Game semantics (concurrent games) (Yamada & Abramsky, Winskel et al. , Paquet) 2 / 25

  3. Internal monoids In a category with finite products: 1 e m Ý Ñ M Ð Ý M ˆ M e ˆ M M ˆ e 1 ˆ M M ˆ M M ˆ 1 Unit law m M – – – M ˆ m p M ˆ M q ˆ M M ˆ p M ˆ M q Assoc. law M ˆ M m ˆ M m M ˆ M M m 3 / 25

  4. Internal monoids In a category with finite products: In Set : monoids 1 e m Ý Ñ M Ð Ý M ˆ M In Cat : strict monoidal categories e ˆ M M ˆ e 1 ˆ M M ˆ M M ˆ 1 Unit law m M – – – M ˆ m p M ˆ M q ˆ M M ˆ p M ˆ M q Assoc. law M ˆ M m ˆ M m M ˆ M M m 3 / 25

  5. Internal pseudomonoids In Cat : 1 e m Ý Ñ M Ð Ý M ˆ M e ˆ M M ˆ e 1 ˆ M M ˆ M M ˆ 1 Unit 2-cells ρ λ m – – M » » data M ˆ m » p M ˆ M q ˆ M M ˆ p M ˆ M q M ˆ M Assoc. 2-cell α m m ˆ M – M ˆ M M m 4 / 25

  6. Internal pseudomonoids In Cat : 1 e m Ý Ñ M Ð Ý M ˆ M e ˆ M M ˆ e 1 ˆ M M ˆ M M ˆ 1 Unit 2-cells ρ λ m – – M » » data M ˆ m » p M ˆ M q ˆ M M ˆ p M ˆ M q M ˆ M Assoc. 2-cell α m m ˆ M – M ˆ M M m + triangle and pentagon laws ù monoidal category 4 / 25

  7. Internal pseudomonoids In Cat : 1 e m Ý Ñ M Ð Ý M ˆ M ...likewise in any fp-bicategory e ˆ M M ˆ e Unit 2-cells 1 ˆ M M ˆ M M ˆ 1 ρ λ m – – M » » data M ˆ m » p M ˆ M q ˆ M M ˆ p M ˆ M q M ˆ M Assoc. 2-cell α m m ˆ M – M ˆ M M m + triangle and pentagon laws ù monoidal category 4 / 25

  8. In a CCC every r X ñ X s becomes a monoid: ´ ¯ Id X ˝ 1 Ý Ý Ñ r X ñ X s Ð Ý r X ñ X s ˆ r X ñ X s In a cc-bicategory every r X ñ X s becomes a pseudomonoid: ? ´ Id X ˝ ¯ 1 Ý Ý Ñ r X ñ X s Ð Ý r X ñ X s ˆ r X ñ X s need to check coherence laws ( i.e. triangle + pentagon) 5 / 25

  9. Coherence Programme: 1. Construct a type theory Λ ˆ , Ñ for cartesian closed bicategories ps (this work) , 2. Use NBE to prove the type theory is coherent bicategorical version of [Fiore2002] (my thesis) , 6 / 25

  10. Coherence Programme: 1. Construct a type theory Λ ˆ , Ñ for cartesian closed bicategories ps (this work) , 2. Use NBE to prove the type theory is coherent bicategorical version of [Fiore2002] (my thesis) , Application: Algebraic structure definable in every CCC ñ algebraic pseudo-structure definable in every cc-bicategory 6 / 25

  11. Desiderata A type theory Λ ˆ , Ñ that: ps 7 / 25

  12. Desiderata A type theory Λ ˆ , Ñ that: ps 1. Generalises the simply-typed lambda calculus, 2. Is reasonable for calculations, 3. Is sound and complete 7 / 25

  13. Desiderata A type theory Λ ˆ , Ñ that: ps 1. Generalises the simply-typed lambda calculus, 2. Is reasonable for calculations, 3. Is sound and complete i.e. freeness property for the syntactic model. 7 / 25

  14. Bicategories 8 / 25

  15. Bicategories - Objects X P ob p B q , 8 / 25

  16. Bicategories - Objects X P ob p B q , ` ˘ - Hom-categories B p X , Y q , ‚ , id : 8 / 25

  17. Bicategories - Objects X P ob p B q , ` ˘ - Hom-categories B p X , Y q , ‚ , id : f 1-cells X Ý Ñ Y f 2-cells X ó α Y f 1 8 / 25

  18. Bicategories - Objects X P ob p B q , ` ˘ - Hom-categories B p X , Y q , ‚ , id : f 1-cells X Ý Ñ Y f 2-cells X ó α Y f f 1 ó α X Y f 1 ó α 1 f 2 8 / 25

  19. Bicategories - Objects X P ob p B q , ` ˘ - Hom-categories B p X , Y q , ‚ , id : f 1-cells X Ý Ñ Y f 2-cells X ó α Y f 1 - Functors Id X 1 Ý Ý Ñ B p X , X q ˝ X , Y , Z B p Y , Z q ˆ B p X , Y q Ý Ý Ý Ý Ñ B p X , Z q 8 / 25

  20. Bicategories - Objects X P ob p B q , ` ˘ - Hom-categories B p X , Y q , ‚ , id : f 1-cells X Ñ Y Ý f 2-cells X ó α Y f 1 - Functors Id X 1 Ý Ý Ñ B p X , X q ˝ X , Y , Z B p Y , Z q ˆ B p X , Y q Ý Ý Ý Ý Ñ B p X , Z q g f X Y Z ó α ó β f 1 g 1 8 / 25

  21. Bicategories - Objects X P ob p B q , ` ˘ - Hom-categories B p X , Y q , ‚ , id : f 1-cells X Ý Ñ Y f 2-cells X ó α Y f 1 - Functors Id X 1 Ý Ý Ñ B p X , X q ˝ X , Y , Z B p Y , Z q ˆ B p X , Y q Ý Ý Ý Ý Ñ B p X , Z q - Invertible 2-cells a h , g , f p h ˝ g q ˝ f ù ù ù ñ h ˝ p g ˝ f q l f Id X ˝ f ù ñ f r g g ˝ Id X ù ñ g subject to a triangle law and pentagon law. 8 / 25

  22. Cartesian closed bicategories Bicategories B equipped with biuniversal 1-cells 9 / 25

  23. Cartesian closed bicategories Bicategories B equipped with biuniversal 1-cells (fp) π i : Π n p A 1 , . . . , A n q Ñ A i p 1 ď i ď n q (cc) eval : p A ñ B q ˆ A Ñ B NB: Differ from the ‘cartesian bicategories’ of Carboni and Walters! 9 / 25

  24. Cartesian closed bicategories Bicategories B equipped with biuniversal 1-cells (fp) π i : Π n p A 1 , . . . , A n q Ñ A i p 1 ď i ď n q (cc) eval : p A ñ B q ˆ A Ñ B inducing families of equivalences ś n B p X , Π n p A 1 , . . . , A n qq » i “ 1 B p X , A i q B p X , A “ ⊲ B q » B p X ˆ A , B q NB: Differ from the ‘cartesian bicategories’ of Carboni and Walters! 9 / 25

  25. Cartesian closed bicategories Bicategories B equipped with biuniversal 1-cells (fp) π i : Π n p A 1 , . . . , A n q Ñ A i p 1 ď i ď n q (cc) eval : p A ñ B q ˆ A Ñ B inducing families of equivalences p π 1 ˝´ ,...,π n ˝´q ś n B p X , Π n p A 1 , . . . , A n qq » i “ 1 B p X , A i q % x´ ,..., “y (tupling) eval A , B ˝p´ˆ A q ⊲ B q B p X , A “ » B p X ˆ A , B q % λ (currying) NB: Differ from the ‘cartesian bicategories’ of Carboni and Walters! 9 / 25

  26. Substitution and composition In any CCC: � x k r u 1 { x 1 , . . . , u n { x n s � “ � u k � “ π k ˝ x � u 1 � , . . . , � u n � y 10 / 25

  27. Substitution and composition In any CCC: � x k r u 1 { x 1 , . . . , u n { x n s � “ � u k � “ π k ˝ x � u 1 � , . . . , � u n � y In any cc-bicategory: � x k r u 1 { x 1 , . . . , u n { x n s � “ � u k � – π k ˝ x � u 1 � , . . . , � u n � y 10 / 25

  28. Substitution and composition In any CCC: � x k r u 1 { x 1 , . . . , u n { x n s � “ � u k � “ π k ˝ x � u 1 � , . . . , � u n � y In any cc-bicategory: � x k r u 1 { x 1 , . . . , u n { x n s � “ � u k � – π k ˝ x � u 1 � , . . . , � u n � y Question: what is bicategorical substitution? 10 / 25

  29. An algebraic theory with substitution: 11 / 25

  30. An algebraic theory with substitution: - Sorts S , 11 / 25

  31. An algebraic theory with substitution: - Sorts S , - Constants x 1 : X 1 , . . . , x n : X n $ t p x 1 , . . . , x n q : Y , 11 / 25

  32. An algebraic theory with substitution: - Sorts S , - Constants x 1 : X 1 , . . . , x n : X n $ t p x 1 , . . . , x n q : Y , - Variables x 1 : X 1 , . . . , x n : X n $ x i : X i p 1 ď i ď n q , 11 / 25

  33. An algebraic theory with substitution: - Sorts S , - Constants x 1 : X 1 , . . . , x n : X n $ t p x 1 , . . . , x n q : Y , - Variables x 1 : X 1 , . . . , x n : X n $ x i : X i p 1 ď i ď n q , - A substitution rule t , p u 1 , . . . , u n q ÞÑ t r u i { x i s 11 / 25

  34. An algebraic theory with substitution: - Sorts S , - Constants x 1 : X 1 , . . . , x n : X n $ t p x 1 , . . . , x n q : Y , - Variables x 1 : X 1 , . . . , x n : X n $ x i : X i p 1 ď i ď n q , - A substitution rule t , p u 1 , . . . , u n q ÞÑ t r u i { x i s such that x k r u i { x i s “ u k p 1 ď k ď n q t r x i { x i s “ t t r u i { x i sr v j { y j s “ t r u i r v j { y j s{ x i s 11 / 25

  35. Abstract clone p S , C q = abstract theory of substitution: 12 / 25

  36. Abstract clone p S , C q = abstract theory of substitution: - Sorts S , 12 / 25

  37. Abstract clone p S , C q = abstract theory of substitution: - Sorts S , t - Hom-sets C p X 1 , . . . , X n ; Y q of operations X 1 , . . . , X n Ý Ñ Y , 12 / 25

  38. Abstract clone p S , C q = abstract theory of substitution: - Sorts S , t - Hom-sets C p X 1 , . . . , X n ; Y q of operations X 1 , . . . , X n Ý Ñ Y , p p i q X 1 ,..., Xn - Projections X 1 , . . . , X n Ý Ý Ý Ý Ý Ñ X i p 1 ď i ď n q , 12 / 25

  39. Abstract clone p S , C q = abstract theory of substitution: - Sorts S , t - Hom-sets C p X 1 , . . . , X n ; Y q of operations X 1 , . . . , X n Ý Ñ Y , p p i q X 1 ,..., Xn - Projections X 1 , . . . , X n Ý Ý Ý Ý Ý Ñ X i p 1 ď i ď n q , - Substitution mappings C p X 1 , . . . , X n ; Y q ˆ ś n i “ 1 C p Γ; X i q Ñ C p Γ; Y q t , p u 1 , . . . , u n q ÞÑ t r u 1 , . . . , u n s 12 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend