a double approach to variation and enrichment for
play

A Double Approach to Variation and Enrichment for Bicategories - PowerPoint PPT Presentation

A Double Approach to Variation and Enrichment for Bicategories Susan Niefield (with J.R.B. Cockett and R.J. Wood) June 2012 ev CT95 Moncat / V mod Mon V Kelly: works for bicategories (N) 1997 Generalize to bicategories? (NW)


  1. A Double Approach to Variation and Enrichment for Bicategories Susan Niefield (with J.R.B. Cockett and R.J. Wood) June 2012

  2. � ev � CT95 Moncat / V mod Mon V Kelly: works for bicategories (N) 1997 Generalize to bicategories? (NW) Relate to Cat / B ≃ Fun ( B , S pan ) ≃ Fun N ( B , P rof )? 2005 (1) Fun ( B , S ) ≃ Fun N ( B , Mod S ) (CNW) (2) LDF / B ≃ Fun ( B co , S pan ) ≃ Fun N ( B co , P rof ) (1) 2011 ▲ ax ( ❇ , ❙ ) double category for nice ❇ and ❙ (Par´ e) ▲ ax (( ❱ B ) op , ❙ pan ) ≃ ❈ at / / B Note: Fun ( B co , S pan ) ≃ H ▲ ax (( ❱ B ) op , ❙ pan ) Idea: (1) for double categories and vertical structure for (2)

  3. � � � � � � � � � Double Categories π 2 d 0 � ❉ 0 Weak category objects ❉ 1 × ❉ 0 ❉ 1 ❉ 1 × ❉ 0 ❉ 1 ❉ 1 × ❉ 0 ❉ 1 µ � ❉ 1 ❉ 1 ❉ 1 ❉ 1 ❉ 1 ❉ 1 ❉ 0 ❉ 0 in CAT ∆ π 1 d 1 Objects: objects of ❉ 0 � D ′ Horizontal morphisms: morphisms of ❉ 0 , D ¯ Vertical morphism: objects of ❉ 1 , D D • � D ′ D ′ D D Cells: morphisms of ❉ 1 , • • ¯ ¯ ¯ ¯ D ′ D ′ D D Note: V ❉ is a bicategory and H ❉ is a 2-category

  4. Examples ❙ pan : sets, functions, spans, . . . ❈ at : categories, functors, profunctors, . . . ❱ B : vertically B , a bicategory (horizontally discrete) ▲ ax ( ❇ , ❙ ): lax functors, transformations, modules, modulations (horizontal) (CKSW) ▼ od ❉ : monads in V ❉ , homomorphisms, modules, . . . / B ) 1 = ❉ 1 / id • ❉ / / B : ( ❉ / / B ) 0 = ❉ 0 / B , ( ❉ / B ❙ pan \ \ 1 = ❙ pan ∗ , pointed sets

  5. � � � � � � The Double Category ▲ ax ( ❇ , ❙ ) (Par´ e) f Ff � FB ′ � B ′ B ′ FB ′ B B FB FB � ❙ • • b ′ • • Fb ′ F : ❇ b � β �→ Fb � F β horiz functorial, vert lax, . . . lax functor ¯ ¯ ¯ ¯ F ¯ F ¯ F ¯ F ¯ B ′ B ′ B ′ B ′ B B B B ¯ F ¯ f f � F id • B , � b : F ¯ � F (¯ F ◦ B : id • b · Fb b · b ) F b , ¯ FB t B � F ′ B F ′ B FB FB B � F ′ • • t b • F ′ b t : F �→ Fb � b � horiz natural, vert functorial, . . . F ′ ¯ F ′ ¯ transformation F ¯ F ¯ ¯ B B B B B t ¯ B

  6. � � � � � � � � � � � � The Double Category ▲ ax ( ❇ , ❙ ), cont. Fb � F ¯ F ¯ FB FB FB B B f Ff � FB ′ � B ′ • B ′ FB ′ B B FB FB � F � � � � � � � � • • m ¯ b ′ mb ′ � • b � • β • �→ mb � • m β • mb • b m � � � � � � ¯ ¯ ¯ ¯ G ¯ G ¯ G ¯ G ¯ B ′ B ′ B ′ B ′ B B B B G G ¯ G ¯ G ˜ G ˜ G ˜ B B B B B ¯ G ¯ • f f G ¯ module b t B � F ′ B t � F ′ F ′ B F ′ FB FB F F B • • • �→ • µ b • m ′ b m � µ m ′ mb � b � G ′ ¯ G ′ ¯ G ¯ G ¯ ¯ G ′ G ′ G G u � B B B B B u ¯ B modulation Define: ❋ un ( B co , S pan ) = ▲ ax (( ❱ B ) op , ❙ pan )

  7. The Equivalence ▲ ax ( ❇ , ❙ ) Mon � ▲ ax N ( ❇ , ▼ od ❙ ) � ❙ , define Mon F : ❇ � ▼ od ❙ by Given F : ❇ F id • FB , � B � B , F ◦ B �→ ( FB F id • B ) • B , id • Ff homomorphism, Fb module, F β equivariant (since F is lax) Mon : transformations, modules, modulations �→ same ( Mon ) − 1 is composition with U : ▼ od ❙ � ❙ ▲ ax ( ❇ , ❙ pan ) ≃ ▲ ax N ( ❇ , ❈ at ), ❋ un ( B , S ) ≃ ❋ un N ( B , Mod S ) � V W in Moncat Note: loosely related to ev ⊣ mod � Mod V ✶ W normal in Bicat

  8. � � � � � � � � Variation for Bicategories F � ❙ pan , consider the projection B F P � B , where Given ( ❱ B ) op objects of B F : ( B , x ∈ FB ) 1 1 1 s � x ¯ ( b , s ) x � (¯ morphisms of B F : ( B , x ) B , ¯ x ), with Fb Fb Fb � � � � � � � � � F ¯ F ¯ F ¯ FB FB FB B B B s ′ ( b , s ) � Fb ′ Fb ′ 1 1 � � (¯ (¯ � cells of B F : ( B , x ) ( B , x ) B , ¯ B , ¯ x ) x ) , with β � � F β � s � ( b ′ , s ′ ) Fb Fb � ❙ pan Note: ❱ B F is Par´ e’s “elements of F ” ❊ l F , for F : ( ❱ B ) op

  9. � � � � � � � � � � Local Discrete Fibrations � B is a local discrete fibration (LDF) if A lax functor P : X X ( X , ¯ � B ( PX , P ¯ X ) is a discrete fibration, for all X , ¯ X ) X P � B is an LDF strict functor with small fibers Proposition: B F Proof: ( b , F β s ′ ) (¯ (¯ β B F ( B , x ) ( B , x ) B , ¯ B , ¯ x ) x ) ( b ′ , s ′ ) P b ¯ ¯ B B B B B β b ′ � S pan ∗ B co B co S pan ∗ F F Remark: pb in the category of bicats and lax functors B co B co S pan S pan

  10. � � � � � � � � � � � � � Local Discrete Fibrations, cont. � F ′ : ( ❱ B ) op � ❙ pan A transformation t : F t B � F ′ B F ′ B FB FB B F ′ b • �→ Fb • t b • b � ¯ F ′ ¯ F ′ ¯ F ¯ F ¯ B B B B B t ¯ B � B F ′ over B defined by induces an LDF functor B t : B F ( b , s ) � ( b , t b s ) � (¯ (¯ (¯ (¯ ( B , x ) ( B , x ) B , ¯ B , ¯ x ) x ) �→ ( B , t B x ) ( B , t B x ) B , t ¯ B , t ¯ B ¯ B ¯ x ) x ) β β ( b ′ , s ′ ) ( b ′ , t b ′ s ′ ) since the following diagram commutes when the triangle does by horiz naturality of t t b ′ � F ′ b ′ s ′ Fb ′ Fb ′ Fb ′ Fb ′ F ′ b ′ 1 1 � � � � F ′ � F β � β s � F ′ b F ′ b Fb Fb Fb Fb t b

  11. � � � � � � Local Discrete Fibrations, cont. � ❙ pan is given by a lax functor • G : ( ❱ B ) op A module m : F � ❙ pan s.t. M ( − , 0) = F and M ( − , 1) = G M : ( ❱ ( B × ✷ )) op � B × ✷ , together Thus, m induces an LDF functor ( B × ✷ ) M with a diagram P F � B B F B F B pb LDF � ( − , 0) � B × ✷ ( B × ✷ ) M ( B × ✷ ) M ( B × ✷ ) M ( B × ✷ ) M B × ✷ B × ✷ B × ✷ pb ( − , 1) LDopF B G B G B B P G

  12. � � � � � � � Local Discrete Fibrations, cont. t � F ′ F ′ F F A modulation induces a lax functor m � • µ • m ′ G ′ G ′ u � G G � ( B × ✷ ) M ′ over B × ✷ , and a diagram ( B × ✷ ) M B t � B F ′ B F B F B F ′ pb � ( B × ✷ ) M ′ ( B × ✷ ) M ( B × ✷ ) M ( B × ✷ ) M ( B × ✷ ) M ( B × ✷ ) M ′ ( B × ✷ ) M ′ ( B × ✷ ) M ′ pb B G B G B G ′ B G ′ B u

  13. � � � � � � � � � � � � � � The Double Category ▲ DF / / B P � B LDF functors with small fibers objects: X P � B X X B pb LDF � ( − , 0) H � X ′ X ′ X X � � B × ✷ morphisms: � � ���� M M M M B × ✷ B × ✷ B × ✷ � � P P ′ pb B B LDopF ( − , 1) Y Y B B horizontal Q vertical � X ′ X ′ X X B pb ( − , 0) � M ′ M ′ M ′ M ′ cells: M M M M over B × ✷ B × ✷ pb ( − , 1) Y ′ Y ′ Y Y B

  14. � � � � � � � The Equivalence � ▲ DF / Theorem: B − : ▲ ax (( ❱ B ) op , ❙ pan ) / B is an equivalence � B , define F : ( ❱ B ) op � ❙ pan by Proof (sketch): Given P : X b � ¯ x � ¯ FB = { X | PX = B } and F ( B B ) = { X X | Px = b } with projections FB � d 0 Fb B , and constraints FB F ◦ � F id • d 1 � F ¯ B given � F � F (¯ X , and F ¯ by X �→ id • b × F ¯ B Fb bb ) by � F ( x , ¯ x ) � ˜ ˜ X X X X X � � ����� � � � x x ¯ ¯ ¯ X X P ¯ bb � ˜ ˜ B B B B � � ����� � id B � � ¯ b ¯ ¯ b B B Horizontal and vertical morphisms of ▲ DF / / B give rise to transformations and modules, and cells induce modulations.

  15. A Double Approach to Enrichment for Bicategories Showed LDF / B ≃ ˆ B - Cat , where ˆ 2005 B is the bicategory with (CNW) B ) = Sets B ( B , ¯ | ˆ B| = |B| and ˆ B ( B , ¯ B ) op For F : B ( B , ¯ � Sets and ¯ F : B (¯ B , ˜ � Sets , B ) op B ) op F · F : B ( B , ˜ ¯ � Sets is given for c : B � ˜ B ) op B by � b � ¯ b (¯ Fb × ¯ F ¯ b × B ( c , ¯ F · F )( c ) = bb ) � Sets and the identity on B is ( − , id B ): B ( B , B ) op

  16. � � � � � � � The Double Category ˆ B - ❈ at : Objects ˆ B -categories X , i.e., a set |X| together with a function � |B| , ˆ B -morphisms X [ X , ¯ � P ¯ P : |X| X ]: PX X , and cells X [ ¯ X , ˜ X ] · X [ X , ¯ � X [ X , ˜ � X [ X , X ] s.t. . . . X ] X ], and id PX � B an LDF, define Example: For P : X X [ X , ¯ X ]: B ( PX , P ¯ � Sets X ) op x � ¯ b �→ X [ X , ¯ X ] b = { X X | Px = b } β ∗ x ′ � � X , ¯ ¯ ¯ X X X X X X β ∗ : X [ X , ¯ � X [ X , ¯ x ′ X ] b ′ X ] b b � � PX , P ¯ P ¯ P ¯ B X PX PX X X β b ′

  17. � � � � The Double Category ˆ B - ❈ at : Horizontal Morphisms ˆ � X ′ B -functors H : X X [ X , ¯ X ] H � |X ′ | |X ′ | |X| |X| P ¯ P ¯ PX PX X X s.t. . . . � � � ��� � P � P ′ X ′ [ HX , H ¯ X ] |B| |B| H � X ′ X ′ X X � Example: For � � ���� in ▲ DF / / B , define � � P P ′ B B H b : X [ X , ¯ � X ′ [ HX , H ¯ x � ¯ Hx � H ¯ X ] b X ] b by X X �→ HX X

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend