a priori and a posteriori analyses of the dpg method
play

A priori and a posteriori analyses of the DPG method Jay - PowerPoint PPT Presentation

A priori and a posteriori analyses of the DPG method Jay Gopalakrishnan Portland State University ICERM Workshop on Robust Discretization and Fast Solvers for Computable Multi-Physics Models Brown University, May 2013 AFOSR, NSF Thanks: Jay


  1. A priori and a posteriori analyses of the DPG method Jay Gopalakrishnan Portland State University ICERM Workshop on Robust Discretization and Fast Solvers for Computable Multi-Physics Models Brown University, May 2013 AFOSR, NSF Thanks: Jay Gopalakrishnan 1/38

  2. Contents Principal Collaborator in DPG research: Leszek Demkowicz. Three avenues to DPG methods ◮ ◮ ◮ A priori error analysis ◮ ◮ A posteriori error analysis Fast solvers Examples ◮ ◮ ◮ ◮ ◮ Jay Gopalakrishnan 2/38

  3. Three avenues to DPG methods Least-squares Galerkin method Petrov-Galerkin DPG with optimal methods test space Mixed Galerkin method Jay Gopalakrishnan 3/38

  4. “Petrov-Galerkin” schemes (PG) PG schemes are distinguished by different trial and test (Hilbert) spaces. � P.D.E.+ The problem: boundary conditions. ↓  Find x in a trial space X satisfying  Variational form: b ( x , y ) = ℓ ( y )  for all y in a test space Y. ↓  Find x h in a discrete trial space X h ⊂ X satisfying  Discretization: b ( x h , y h ) = ℓ ( y h )  for all y h in a discrete test space Y h ⊂ Y . For PG schemes, X h � = Y h in general. Jay Gopalakrishnan 4/38

  5. � Elements of theory Variational formulation:   Exact inf-sup condition � � a uniqueness   | b ( x , y ) |  + = ⇒ wellposedness  C � x � X ≤ sup condition � y � Y y ∈ Y Babuˇ ska-Brezzi theory:   Discrete inf-sup condition   | b ( x h , y h ) |  = ⇒ � x − x h � X ≤ C inf � x − w h � X .  C � x h � X ≤ sup w h ∈ X h � y h � Y y h ∈ Y h Difficulty: Exact inf-sup condition = ⇒ Discrete inf-sup condition Jay Gopalakrishnan 5/38

  6. � Elements of theory Variational formulation:   Exact inf-sup condition � � a uniqueness   | b ( x , y ) |  + = ⇒ wellposedness  C � x � X ≤ sup condition � y � Y y ∈ Y Babuˇ ska-Brezzi theory:   Discrete inf-sup condition   | b ( x h , y h ) |  = ⇒ � x − x h � X ≤ C inf � x − w h � X .  C � x h � X ≤ sup w h ∈ X h � y h � Y y h ∈ Y h Difficulty: Exact inf-sup condition = ⇒ Discrete inf-sup condition Is there a way to find a stable test space for any given trial space (thus giving a stable method automatically)? Jay Gopalakrishnan 5/38

  7. The ideal method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . [ Demkowicz+G 2011 ] Rationale: Jay Gopalakrishnan 6/38

  8. The ideal method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . [ Demkowicz+G 2011 ] Rationale: Which function y maximizes | b ( x , y ) | Q: for any given x ? � y � Y A: y = Tx is the maximizer. ← Optimal test function. DPG Idea: If the discrete test space contains the optimal test functions, exact inf-sup condition = ⇒ discrete inf-sup condition . Jay Gopalakrishnan 6/38

  9. The ideal method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . [A.1] { w ∈ X : b ( w , y ) = 0 ∀ y ∈ Y } = { 0 } . | b ( w , y ) | [A.2] ∃ C 1 , C 2 > 0 such that C 1 � y � Y ≤ sup ≤ C 2 � y � Y . � w � X w ∈ X Theorem (DPG Quasioptimality) ⇒ � x − x h � X ≤ C 2 [A.1–A.2] = inf � x − w h � X . C 1 w h ∈ X h Jay Gopalakrishnan 6/38

  10. The ideal method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . But . . . can we really compute Tx? For a few problems, Tx can be calculated in closed form. When Tx cannot be hand calculated, we overcome two difficulties: ◮ Redesign formulation so that T is local (by hybridization). ◮ Approximate T by a computable (finite-rank) T r . Jay Gopalakrishnan 6/38

  11. The ideal method Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that ∀ y ∈ Y opt def b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . The ideal DPG method = i DPG method Jay Gopalakrishnan 7/38

  12. Trivial Example 1 Standard FEM is an iDPG method � Given F ∈ H − 1 ( Ω ) , � Problem ∇ u · � � ∀ v ∈ H 1 ∇ v = F ( v ) , 0 ( Ω ) . find u ∈ H 1 0 ( Ω ) solving: Ω Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that Recall def ∀ y ∈ Y opt b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . Jay Gopalakrishnan 8/38

  13. Trivial Example 1 Standard FEM is an iDPG method � Given F ∈ H − 1 ( Ω ) , � Problem ∇ u · � � ∀ v ∈ H 1 ∇ v = F ( v ) , 0 ( Ω ) . find u ∈ H 1 0 ( Ω ) solving: Ω Set X = Y = H 1 0 ( Ω ) and � ∇ v · � � ( v , y ) Y = ∇ y . Ω Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that Recall def ∀ y ∈ Y opt b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . Jay Gopalakrishnan 8/38

  14. Trivial Example 1 Standard FEM is an iDPG method � Given F ∈ H − 1 ( Ω ) , � Problem ∇ u · � � ∀ v ∈ H 1 ∇ v = F ( v ) , 0 ( Ω ) . find u ∈ H 1 0 ( Ω ) solving: Ω Set X = Y = H 1 0 ( Ω ) and � ∇ v · � � ( v , y ) Y = ∇ y . Ω Then ( · , · ) Y = b ( · , · ) = ⇒ T = identity, so Y opt = X h . h Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that Recall def ∀ y ∈ Y opt b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . Jay Gopalakrishnan 8/38

  15. Next Three avenues to DPG methods ◮ Petrov-Galerkin with optimal test functions . . . . . . . . . . . . . . . . . . . . . . . . ✦ ◮ Least-squares Galerkin method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ◮ A priori error analysis ◮ Ideal DPG method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✦ ◮ A posteriori error analysis Fast solvers Examples ◮ Example 1 (Standard FEM). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ✦ ◮ ◮ ◮ ◮ Jay Gopalakrishnan 9/38

  16. Trivial Example 2 L 2 -based least squares method is an ideal DPG method � Given an f ∈ L 2 ( Ω ) and a linear continuous bijective A : X → L 2 ( Ω ) , Problem find u ∈ X satisfying Au = f . Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that Recall def ∀ y ∈ Y opt b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . Jay Gopalakrishnan 10/38

  17. Trivial Example 2 L 2 -based least squares method is an ideal DPG method � Given an f ∈ L 2 ( Ω ) and a linear continuous bijective A : X → L 2 ( Ω ) , Problem find u ∈ X satisfying Au = f . Set Y = L 2 ( Ω ), b ( x , y ) = ( Ax , y ) Y , ℓ ( y ) = ( f , y ) Y . Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that Recall def ∀ y ∈ Y opt b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . Jay Gopalakrishnan 10/38

  18. Trivial Example 2 L 2 -based least squares method is an ideal DPG method � Given an f ∈ L 2 ( Ω ) and a linear continuous bijective A : X → L 2 ( Ω ) , Problem find u ∈ X satisfying Au = f . Set Y = L 2 ( Ω ), b ( x , y ) = ( Ax , y ) Y , ℓ ( y ) = ( f , y ) Y . ⇒ Y opt Then ( Tw , y ) Y = ( Aw , y ) = ⇒ T = A = = AX h = ⇒ h iDPG equations become Normal equations: ( Ax h , Aw h ) Y = ( f , Aw h ) Y ∀ w h ∈ X h . Pick any X h ⊆ X . The ideal DPG method finds x h ∈ X h such that Recall def ∀ y ∈ Y opt b ( x h , y ) = ℓ ( y ) , = T ( X h ) , h where T : X �→ Y is defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . Jay Gopalakrishnan 10/38

  19. The least-squares avenue Least-squares Galerkin method Petrov-Galerkin DPG with optimal methods test space Mixed Galerkin method Jay Gopalakrishnan 11/38

  20. Definitions Riesz map: R Y : Y → Y ∗ : ( R Y y )( v ) = ( y , v ) Y , ∀ y , v ∈ Y . Operator generated by the form: B : X → Y ∗ : Bx ( y ) = b ( x , y ) , ∀ x ∈ X , y ∈ Y . Trial-to-Test operator T : X �→ Y was defined by ( Tw , y ) Y = b ( w , y ) , ∀ w ∈ X , y ∈ Y . T = R − 1 = ⇒ ◦ B . Y Energy norm on X : def | | | z | | | X = � Tz � Y . Jay Gopalakrishnan 12/38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend