a power comparison for testing normality
play

A Power Comparison for Testing Normality Shigekazu Nakagawa, Hiroki - PowerPoint PPT Presentation

A Power Comparison for Testing Normality Shigekazu Nakagawa, Hiroki Hashiguchi, and Naoto Niki Kurashiki University of Science and the Arts Saitama University Tokyo University of Science COMPSTAT2010, Paris-France, Aug. 22-27 Nakagawa,


  1. A Power Comparison for Testing Normality Shigekazu Nakagawa, Hiroki Hashiguchi, and Naoto Niki Kurashiki University of Science and the Arts Saitama University Tokyo University of Science COMPSTAT2010, Paris-France, Aug. 22-27 Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 1 / 24

  2. Table of Contents Background · Motivation · Problem Omnibus test statistics for normality Modified Jarque–Bera test statistic Power study Monte Carlo simulation Alternative distributions are contaminated normal distributions Summary Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 2 / 24

  3. Background Jarque–Bera (1987) pointed out that a Lagrange multiplier test is equivalent to JB test against the Pearson distributions. Jarque–Bera ( √ b 1 2 ) + ( b 2 − 3) 2 JB = n , 6 24 √ b 1 = m 3 /m 3 / 2 , b 2 = m 4 /m 2 where for a random sample ( X 1 , X 2 , . . . , X n ) , 2 , 2 m j = (1 /n ) ∑ n i =1 ( X i − ¯ X ) j , j = 2 , 3 , 4 . JB ∼ χ 2 ( n → ∞ ) under H 0 . 0.5 2 0.4 Histgram of JB : n = 100 Motivation curve in blue: pdf of χ 2 2 However, the χ 2 approximation does not 0.3 work well. 0.2 Unfortunately, a normalizing tr. has not 0.1 been given yet. 0.0 0 2 4 6 8 10 Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 3 / 24

  4. Proposed test statistic Nakagawa et al. (2007) proposed a modified version of the Jarque–Bera test. Modified Jarque–Bera test √ b 1 2 + b 2 JB ′ = 2 6 24 A normalizing tr. of the null dist. for JB ′ has been derived. Our goal 4 When is the power of JB ′ test 3 superior to that of JB ? As H 1 , the contaminated normal 2 distributions are considered. 1 0 0.0 0.5 1.0 1.5 2.0 Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 4 / 24

  5. Power study 1 Let X 1 , X 2 , . . . , X n be i.i.d. rv with a cdf F . Φ : the cdf of the standard normal distribution Omnibus testing for normality (two sided) ( x − µ ) H 0 : F ( x ) = Φ ( ∀ x ∈ R ) σ ( x − µ ) H 1 : F ( x ) ̸ = Φ ( ∃ x ∈ R ) σ µ and σ may be known or unknown We consider JB ′ , JB , and Shapiro–Wilk SW tests. As H 1 , contaminated normal distributions are considered: F = (1 − p ) N ( µ 0 , σ 2 0 ) + pN ( µ, σ 2 ) CN covers a broad range of distributions, symmetric and asymmetric ones. Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 5 / 24

  6. Power study 2 i . i . d . H 0 : X 1 , X 2 , . . . , X n ∼ N (0 , 1) i . i . d . ∼ (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) H 1 : X 1 , X 2 , . . . , X n Ex. n µ p σ 1 100 0 0 . 10 1 , 2 , 3 , 4 , 6 Sym. 2 100 0 0 . 50 1 , 2 , 3 , 4 , 6 Sym. 3 200 0 0 . 80 1 , 2 , 3 , 4 , 6 Sym. 4 50 3 0 . 50 1 , 2 , 3 , 4 , 6 Asym. Ex. n σ p µ 5 50 4 0 . 05 0 , 1 , 2 , 3 , 4 Asym. 6 50 1 0 . 50 0 , 1 , 2 , 3 , 4 Sym. Ex. n µ σ p 7 50 0 4 0 , 0 . 1 , . . . , 1 Sym. significance level: α = 0 . 1 the number of replications: 10 4 Omnibus test statistics: JB , JB ′ , and SW Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 6 / 24

  7. Ex.1: n = 100 , µ = 0 , p = 0 . 1 , σ = 1 , 2 , 3 , 4 , 6 √ β 1 = 0 σ 1 2 3 4 6 β 2 3.00 4.44 8.33 12.72 19.33 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 −4 −2 0 2 4 −4 −2 0 2 4 −4 −2 0 2 4 σ = 2 σ = 4 σ = 6 curves in red: pdf of N (0 , 1) . curves in blue: pdf of F = (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) . Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 7 / 24

  8. Ex. 1: Powers of JB ′ , JB, SW n=100, p=0.1, µ =0.0 1.0 SW JBP JB 0.8 0.6 power 0.4 0.2 0.0 1 2 3 4 6 β 2 = 3 . 0 → heavy tails − σ Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 8 / 24

  9. Ex. 2: n = 100 , µ = 0 , p = 0 . 5 , σ = 1 , 2 , 3 , 4 , 6 √ β 1 = 0 1 2 3 4 6 σ 3.00 4.08 4.92 5.34 5.68 β 2 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 −6 −2 0 2 4 6 −6 −2 0 2 4 6 −6 −2 0 2 4 6 σ = 2 σ = 4 σ = 6 curves in red: pdf of N (0 , 1) . curves in blue: pdf of F = (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) . Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 9 / 24

  10. Ex. 2: Powers of JB ′ , JB, SW n=100, p=0.5, µ =0.0 1.0 SW JBP JB 0.8 0.6 power 0.4 0.2 0.0 1 2 3 4 6 β 2 = 3 . 0 → heavy tails − σ Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 10 / 24

  11. Ex. 3: n = 200 , µ = 0 , p = 0 . 8 , σ = 1 , 2 , 3 , 4 , 6 √ β 1 = 0 1 2 3 4 6 σ 3.00 3.37 3.56 3.64 3.70 β 2 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 −6 −2 2 4 6 −6 −2 2 4 6 −6 −2 2 4 6 σ = 2 σ = 4 σ = 6 curves in red: pdf of N (0 , 1) . curves in blue: pdf of F = (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) . Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 11 / 24

  12. Ex. 3: Powers of JB ′ , JB, SW n=200, p=0.8, µ =0.0 1.0 SW JBP JB 0.8 0.6 power 0.4 0.2 0.0 1 2 3 4 6 β 2 = 2 . 04 → heavy tails − σ Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 12 / 24

  13. Ex. 4: n = 50 , µ = 3 , p = 0 . 5 , σ = 1 , 2 , 3 , 4 , 6 1 2 3 4 6 σ √ β 1 0.00 0.65 0.92 0.96 0.83 β 2 2.04 2.85 3.72 4.37 5.11 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 −4 0 2 4 6 8 −4 0 2 4 6 8 −4 0 2 4 6 8 σ = 2 σ = 4 σ = 6 curves in red: pdf of N (0 , 1) . curves in blue: pdf of F = (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) . Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 13 / 24

  14. Ex. 4: Powers of JB ′ , JB, SW n=50, p=0.5, µ =3.0 1.0 SW JBP JB 0.8 0.6 power 0.4 0.2 0.0 1 2 3 4 6 √ β 1 = 0 √ β 1 = 0 . 83 β 2 = 2 . 04 β 2 = 5 . 11 σ Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 14 / 24

  15. Ex. 5: n = 50 , σ = 4 , p = 0 . 05 , µ = 0 , 1 , 2 , 3 , 4 0 1 2 3 4 µ √ β 1 0.00 0.90 1.71 2.35 2.84 β 2 13.47 14.12 15.75 17.65 19.24 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 −10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10 µ = 0 µ = 2 µ = 4 curves in red: pdf of N (0 , 1) . curves in blue: pdf of F = (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) . Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 15 / 24

  16. Ex. 5: Powers of JB ′ , JB, SW n=50, p=0.05, σ =4.0 1.0 SW JBP JB 0.8 0.6 power 0.4 0.2 0.0 0 1 2 3 4 √ β 1 = 0 √ β 1 = 2 . 84 β 2 = 13 . 47 β 2 = 19 . 24 µ Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 16 / 24

  17. Ex. 6 : n = 50 , σ = 1 . 0 , p = 0 . 5 , µ = 0 , 1 , 2 , 3 , 4 √ β 1 = 0 0 1 2 3 4 µ 3.00 2.92 2.50 2.04 1.72 β 2 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 −10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10 µ = 0 µ = 2 µ = 4 curve in red: pdf of N (0 , 1) . curves in blue: pdf of F = (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) . Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 17 / 24

  18. Ex. 6: Powers of JB ′ , JB, SW n=50, p=0.5, σ =1.0 1.0 SW JBP JB 0.8 0.6 power 0.4 0.2 0.0 0 1 2 3 4 β 2 = 3 . 0 β 2 = 1 . 72 µ Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 18 / 24

  19. Ex. 7: n = 50 , σ = 4 . 0 , µ = 0 , p = 0 . 0 , 0 . 1 , . . . , 1 . 0 √ β 1 = 0 0.00 0.20 0.50 0.70 1.00 p 3.00 9.75 5.34 4.07 3.00 β 2 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.0 0.0 0.0 −10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10 p = 0 . 0 p = 0 . 5 p = 1 . 0 curves in red: pdf of N (0 , 1) . curves in blue: pdf of F = (1 − p ) N (0 , 1) + pN ( µ, σ 2 ) . Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 19 / 24

  20. Ex. 7: Powers of JB ′ , JB, SW n=50, µ =0.0, σ =4.0 1.0 SW JBP JB 0.8 0.6 power 0.4 0.2 0.0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 β 2 = 13 . 47 β 2 = 3 . 29 p Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 20 / 24

  21. Summary Ranking: Ex. 1 2 3 4 5 6 7 JB 2 3 2 2 2 2 3 JB ′ 1 1 1 3 1 3 1 SW 3 2 1 1 3 1 2 1 S S S A A S S 2 HT HT HT HT ∼ ST HT ST HT JB ′ test is the best for symmetric dist. with heavy tails. JB ′ test is superior to JB test except for dist. with short tails. The power of JB ′ and JB is poor for dist. with short tails. 1 S:Symmetric, A:Asymmetric 2 HT:Heavy tails, ST:Short tails Nakagawa, Hashiguchi, and Niki () A Power Comparison for Testing Normality COMPSTAT2010, Paris 21 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend