normality and automata
play

Normality and Automata Olivier Carton LIAFA Universit e Paris - PowerPoint PPT Presentation

Normality and Automata Olivier Carton LIAFA Universit e Paris Diderot & CNRS Join work with Ver onica Becher and Pablo Heiber (Universidad de Buenos Aires & CONICET) Work supported by LIA Infinis AutoMathA 2015, Leipzig Outline


  1. Normality and Automata Olivier Carton LIAFA Universit´ e Paris Diderot & CNRS Join work with Ver´ onica Becher and Pablo Heiber (Universidad de Buenos Aires & CONICET) Work supported by LIA Infinis AutoMathA 2015, Leipzig

  2. Outline Normality Compressibility One-way transducers Two-way transducers Selection Prefix selection Suffix selection

  3. Expansion of real numbers Fix an integer base b � 2. The alphabet is A = { 0 , 1 , . . . , b − 1 } . ◮ if b = 2, A = { 0 , 1 } , ◮ if b = 10, A = { 0 , 1 , 2 , . . . , 9 } . Each real number ξ ∈ [0 , 1) has an expansion in base b : x = a 1 a 2 a 3 · · · where a i ∈ A and a k � ξ = b k . k ≥ 1 In the rest of this talk: infinite word x ∈ A ω real number ξ ∈ [0 , 1) ← → 010101 · · · = (01) ω 1 / 3 ← → π/ 4 ← → 1100100100001111 · · ·

  4. Normality (Borel 1909) The number of occurrences of a word u in a word w is occ( w, u ) = |{ i : w [ i..i + | u | − 1] = u }| An infinite word x ∈ A ω (resp. a real number ξ ) is simply normal (in base b ) if for any a ∈ A , occ( x [1 ..n ] , a ) = 1 lim b. n n →∞ An infinite word x ∈ A ω (resp. a real number ξ ) is normal (in base b ) if for any u ∈ A ∗ , occ( x [1 ..n ] , u ) 1 lim = b | u | . n n →∞ In base b = 2, this means ◮ the frequencies in x of the 2 digits 0 and 1 are 1 / 2, ◮ the frequencies in x of the 4 words 00 , 01 , 10 , 11 are 1 / 4, ◮ the frequencies in x of the 8 words 000 , 001 , . . . , 111 are 1 / 8, ◮ . . .

  5. Examples Theorem (Borel 1909) Almost all real numbers are normal, that is, the measure of the set of normal numbers in [0 , 1) is 1 . Examples ◮ the infinite word (001) ω = 0010010 · · · is not simply normal in base 2, ◮ the infinite word (01) ω = 01010 · · · is simply normal in base 2 but it is not normal, ◮ the Champernowne word 012345678910111213 · · · is normal in base 10. ◮ the Champernowne word 011011100101110111 · · · is normal in base 2.

  6. Transducers Input tape a 0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 Q Output tape b 0 b 1 b 2 b 3 b 4 b 5 b 6 Transitions p a | v → q for a ∈ A , v ∈ B ∗ . − −

  7. Examples A transducer is an automaton T = � Q, A, B, ∆ , I, F � where ∆ is a finite set of transitions p a | v → q where a ∈ A and v ∈ A ∗ . − − Example (Compression of blocks of consecutive 1) 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 If the input is 010011000111 · · · , the output is 01001000100 · · · . Example (Division by 3 in base 2) 1 | 0 0 | 0 q 0 q 1 q 2 0 | 0 1 | 1 1 | 1 0 | 1 If the input is (01) ω , the output is (000111) ω .

  8. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 0 0

  9. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 0 0 1

  10. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 1 0 1

  11. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 1 0 1 0

  12. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 0 0 1 0 0

  13. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 0 0 1 0 0 1

  14. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 1 0 1 0 0 1

  15. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 1 0 1 0 0 1

  16. Example 1 | 1 q 0 q 1 0 | 0 1 | ε 0 | 0 0 1 1 0 0 1 1 1 0 q 1 0 1 0 0 1 0

  17. Transducers as compressors An infinite word x = a 1 a 2 a 3 · · · is compressible by a transducer a 1 | v 1 a 2 | v 2 a 3 | v 3 if there is an accepting run q 0 − − − → q 1 − − − → q 2 − − − → q 3 · · · satisfying | v 1 v 2 · · · v n | log | B | lim inf | a 1 a 2 · · · a n | log | A | < 1 . n →∞ Different notions of compressors ◮ the function x �→ T ( x ) is one-to-one ◮ deterministic lossless: the map u �→ ( v, q ) is one-to-one u | v q 0 q ◮ the function x �→ T ( x ) is bounded-to-one There is a constant K such that |{ x : T ( x ) = y }| � K .

  18. Characterization of normal words Theorem (Many people) An infinite word is normal if and only if it cannot be compressed by deterministic lossless transducers. ◮ Schnorr and Stimm (1971) non-normality ⇔ finite-state martingale success ◮ Dai, Lathrop, Lutz and Mayordomo (2004) compressibility ⇔ finite-state martingale success normality ⇒ no martingale success ◮ Bourke, Hitchcock and Vinodchandran (2005) non-normality ⇒ martingale success ◮ Becher and Heiber (2013) non-normality ⇔ compressibility (direct) ◮ Becher, Carton and Heiber generalized to bounded-to-one

  19. Randomness Randomness can be characterized as non-compressibility: lim inf n →∞ H ( x [1 ..n ]) − n > −∞ where H is the prefix Kolmogorov complexity of the finite word w . Normal infinite words are the random words for automata. Turing may compress some normal words (Champernowne’s). What is the real power needed to compress a normal word ?

  20. Ingredients Shannon (1958) ◮ frequency of u different from b −| u | implies non maximum entropy ◮ non-maximum entropy implies compressibility Huffman (1952) ◮ simple greedy implementation of Shannon’s general idea ◮ implementation by a finite state tranducer

  21. Deterministic vs Non-Deterministic transducers 0 | 1 0 | 0 q 0 q 1 q 2 0 | 0 1 | 1 1 | 1 1 | 0 Multiplication by 3 in base 2 Theorem Non-deterministic bounded-to-one transducers cannot compress normal infinite words.

  22. Counter transducers ◮ the transducer uses k -counters with integer values that can be incremented, decremented and tested for zero ◮ real-time restriction: incrementation and decrementation can only occur when a input symbol is processed Theorem Bounded-to-one counter transducers cannot compress normal infinite words. Non-real-time two-counter machines are Turing complete.

  23. Summary of the results det non-det non-rt finite-state N N N 1 counter N N N ≥ 2 counters N N T 1 stack ? C C 1 stack + 1 counter C C T where N means cannot compress normal words C means can compress some normal word T means is Turing complete and thus can compress.

  24. Two-way transducers Two-way ⊢ a 1 a 2 a 3 a 4 a 5 a 6 a 7 input tape Q One-way b 0 b 1 b 2 b 3 b 4 b 5 b 6 output tape → q for a ∈ A , v ∈ B ∗ and d ∈ { ⊳, ⊲ } . Transitions p a | v,d − − −

  25. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 0

  26. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 0

  27. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 0 0

  28. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 0 0 0

  29. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 1 0 0

  30. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 1 0 0

  31. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 1 0 0

  32. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 2 0 0

  33. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 2 0 0 1

  34. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 2 0 0 1 1

  35. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 0 0 0 1 1

  36. Example: 0 n 0 10 n 1 10 n 2 1 · · · �→ 0 n 0 1 n 0 0 n 1 1 n 1 0 n 2 1 n 2 · · · ⊢| ε, ⊲ 0 | 0 , ⊲ 0 | ε, ⊳ 0 | 1 , ⊲ ⊢| ε, ⊲ 1 | ε, ⊲ 1 | ε, ⊳ q 0 q 1 q 2 1 | ε, ⊲ ⊢ 0 0 1 0 1 0 0 0 1 q 0 0 0 1 1 0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend