a polynomial invariant and the forbidden move of virtual
play

A polynomial invariant and the forbidden move of virtual knots . . - PowerPoint PPT Presentation

VI @ Nihon University . . A polynomial invariant and the forbidden move of virtual knots . . . . . Migiwa Sakurai migiwa@cis.twcu.ac.jp December 19, 2013 Graduate School of Science Tokyo Womans


  1. 研究集会「結び目の数学 VI 」 @ Nihon University . . A polynomial invariant and the forbidden move of virtual knots . . . . . Migiwa Sakurai migiwa@cis.twcu.ac.jp December 19, 2013 Graduate School of Science Tokyo Woman’s Christian University 1 / 21

  2. Contents 1 Preliminaries 2 forbidden moves and q t ( K ) 3 Examples 2 / 21

  3. Preliminaries § 1. Preliminaries D : a virtual knot diagram def ⇔ D ; a knot diagram with , and virtual +1 - 1 � ��������������������� �� ��������������������� � real virtual knot diag. knot diag. 3 / 21

  4. Preliminaries K : a virtual knot def ⇔ K ; an eq. class of virtual knot diagrams under GRM 4 / 21

  5. Preliminaries A Gauss daigram : a preimage of a virtual knot diagram with info. of real crossings 1 2 + + + + 1 2 5 / 21

  6. Preliminaries GRM of Gauss diagrams ε ε ε -ε ε -ε _ _ + + _ _ _ _ + + + + { All eq. classes of Gauss } one-to-one { All virtual knots } ←→ diagrams by GRM 6 / 21

  7. Preliminaries Forbidden moves ( F ) ε ε ε ε ε′ ε′ ε′ ε′ { } F or GRM F or GRM u F ( K ) = min the number of F s.t K · · · ⇋ ⇋ 7 / 21

  8. Preliminaries Invariants for virtual knots The arc of γ K : a virtual knot Q ε(γ) G : a Gauss diagram of K P , Q : points on the circle S 1 of G γ = − − → PQ : a chord oriented from P into Q ε ( γ ) : the sign of γ γ ε(γ) ε ( P ) = − ε ( γ ) ε ( Q ) = ε ( γ ) The arc of γ = − − → PQ : the arc in S 1 with the ori. form P to Q P -ε(γ) 8 / 21

  9. Preliminaries . Definition 1 . . . 1 i ( γ ) = ”the sum of the sings of all points on the arc of γ ” : the index of γ 2 ([Satoh-Taniguchi]) J n ( K ) = ∑ i ( γ ) = n ε ( γ ) : n -writhe γ ε ( γ )( t | i ( γ ) | − 1) : index polynomial 3 ([Henrich]) p t ( K ) = ∑ 4 ([Cheng]) When we walk on S 1 from a point in S 1 , we denote the labels of arcs as the following: x + y-1 w+1 - z x+1 γ y w γ z-1 { y − x ( ε ( γ ) = 1) N ( γ ) : = z − w ( ε ( γ ) = − 1) . ∑ ε ( γ ) t N ( γ ) : odd writhe poly. f K ( t ) = . i ( γ ): odd . . . . 9 / 21

  10. Preliminaries . Proposition 2 (Satoh-Taniguchi) . . . n > 0 { J n ( K ) + J − n ( K ) } ( t n − 1) . 1 p t ( K ) = ∑ 2 f K ( t ) = ∑ n ∈ Z J 1 − 2 n ( K ) t 2 n . . . . . . . Definition 3 . . . ∑ J n ( K )( t n − 1) q t ( K ) = n ∈ Z ∑ ε ( γ )( t i ( γ ) − 1) . = γ . . . . . p t ( K ) is induced from q t ( K ). f K ( t ) is induced from q t ( K ). 10 / 21

  11. forbidden moves and q t ( K ) § 2. forbidden moves and q t ( K ) . Theorem 4 . . . F K, K ′ s.t. K ⇋ K ′ q t ( K ) − q t ( K ′ ) = ( t − 1)( ± t ℓ ± t m ) ( ℓ, m ∈ Z ) . . . . . . . Corollary 5 . . . q t ( K ) : = ( t − 1) ∑ n ∈ Z a n t n ∑ n ∈ Z | a n | u F ( K ) ≥ . . 2 . . . . From Thm. 4, ∑ n � 0 | J n ( K ) | u F ( K ) ≥ . 4 11 / 21

  12. forbidden moves and q t ( K ) Sketch Proof ′ ) ′ ) -ε(γ 1 -ε(γ 2 -ε(γ 1 ) -ε(γ 2 ) γ 1 ′ γ 2 ′ γ 1 γ 2 ε(γ 1 ′ ) ε(γ 2 ′ ) ε(γ 2 ) ε(γ 1 ) G 1 G 2 { i ( γ ′ 1 ) = i ( γ 1 ) − ε ( γ 2 ) i ( γ ′ 2 ) = i ( γ 2 ) + ε ( γ 1 ) . ε ( γ i ) = ε ( γ ′ i ) ( i = 1 , 2) . 12 / 21

  13. forbidden moves and q t ( K ) q t ( K 1 ) − q t ( K 2 ) = ε ( γ 1 )( t i ( γ 1 ) − 1) + ε ( γ 2 )( t i ( γ 2 ) − 1) 1 ) − 1) − ε ( γ ′ 2 ) − 1) 1 )( t i ( γ ′ 2 )( t i ( γ ′ − ε ( γ ′  ( t − 1)( t i ( γ 1 ) − 1 − t i ( γ 2 ) ) ( ε ( γ i ) = 1)    ( t − 1)( − t i ( γ 1 ) + t i ( γ 2 ) )   ( ε ( γ 1 ) = 1 , ε ( γ 2 ) = − 1)   = ( t − 1)( − t i ( γ 1 ) − 1 + t i ( γ 2 ) − 1 )  ( ε ( γ 1 ) = − 1 , ε ( γ 2 ) = 1)     ( t − 1)( t i ( γ 1 ) − t i ( γ 2 ) − 1 )  ( ε ( γ i ) = − 1)  □ 13 / 21

  14. forbidden moves and q t ( K ) . Theorem 6 . . . 1 ([S]) p t ( K ) : = ( t − 1) ∑ n > 0 b n t n ∑ n > 0 | b n | u F ( K ) ≥ . 2 2 ([Crans, Ganzell, Mellor]) f K ( t ) : = ∑ n � 0 c n t n ∑ n � 0 | c n | u F ( K ) ≥ . 2 . . . . . . Proposition 7 . . . ∑ ∑ ∑ ∑ n � 0 | a n | n > 0 | b n | n � 0 | c n | n � 0 | J n ( K ) | u F ( K ) ≥ ≥ , , . 2 2 2 4 . . . . . 14 / 21

  15. Examples § 3. Examples . Example 8 . . . ∀ n ∈ N , ∃ K n s.t. ” u F ( K n ) can not be determined by p t ( K n ), f K n ( t )”, ”it can be determined by q t ( K n )”. . . . . . m : even ( > 0) 1 ... m +2 m +3 2 m +1 2 m +2 ... m +1 3 2 K m 15 / 21

  16. Examples 1 2 - + 3 + m +1 + ... ... + 2 m +2 + 2 m +1 + + m +2 m +3 16 / 21

  17. Examples i (1) = − m 1 2 - + 3 + m +1 + ... ... + 2 m +2 + 2 m +1 + + m +2 m +3 16 / 21

  18. Examples i (1) = − m 1 i (2) = − 1 2 - + 3 . + . . i ( m + 1) = − 1 m +1 + ... ... 2 m +2 + + 2 m +1 + + m +2 m +3 16 / 21

  19. Examples i (1) = − m 1 i (2) = − 1 2 - + 3 . + . . i ( m + 1) = − 1 m +1 + i ( m + 2) = − 1 ... ... 2 m +2 + . . . + 2 m +1 i (2 m + 1) = − 1 + + m +2 m +3 16 / 21

  20. Examples i (1) = − m 1 i (2) = − 1 2 - + 3 . + . . i ( m + 1) = − 1 m +1 + i ( m + 2) = − 1 ... ... 2 m +2 + . . . + 2 m +1 i (2 m + 1) = − 1 + + m +2 m +3 i (2 m + 2) = m 16 / 21

  21. Examples p t ( K m ) & f K m ( t ) p t ( K m ) = 2 m ( t − 1) . ∑ → | b n | = 2 m . n > 0 f K m ( t ) = 2 mt 2 ∑ → | c n | = 2 m . n ∈ Z q t ( K m ) q t ( K m ) = ( t − 1) { t m − 1 + · · · + 1 + ( − 2 m + 1) t − 1 + · · · + t − m } ∑ → | a k | = 4 m − 2 . n ∈ Z 17 / 21

  22. Examples p t ( K m ) & f K m ( t ) p t ( K m ) = 2 m ( t − 1) . ∑ → | b n | = 2 m . ∴ u F ( K m ) ≥ m . ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ n > 0 f K m ( t ) = 2 mt 2 ∑ → | c n | = 2 m . n ∈ Z q t ( K m ) q t ( K m ) = ( t − 1) { t m − 1 + · · · + 1 + ( − 2 m + 1) t − 1 + · · · + t − m } ∑ → | a k | = 4 m − 2 . n ∈ Z 17 / 21

  23. Examples p t ( K m ) & f K m ( t ) p t ( K m ) = 2 m ( t − 1) . ∑ → | b n | = 2 m . ∴ u F ( K m ) ≥ m . ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ n > 0 f K m ( t ) = 2 mt 2 ∑ → | c n | = 2 m . ∴ u F ( K m ) ≥ m . ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ n ∈ Z q t ( K m ) q t ( K m ) = ( t − 1) { t m − 1 + · · · + 1 + ( − 2 m + 1) t − 1 + · · · + t − m } ∑ → | a k | = 4 m − 2 . n ∈ Z 17 / 21

  24. Examples p t ( K m ) & f K m ( t ) p t ( K m ) = 2 m ( t − 1) . ∑ → | b n | = 2 m . ∴ u F ( K m ) ≥ m . ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ n > 0 f K m ( t ) = 2 mt 2 ∑ → | c n | = 2 m . ∴ u F ( K m ) ≥ m . ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ n ∈ Z q t ( K m ) q t ( K m ) = ( t − 1) { t m − 1 + · · · + 1 + ( − 2 m + 1) t − 1 + · · · + t − m } ∑ → | a k | = 4 m − 2 . ∴ u F ( K m ) ≥ 2 m − 1 . ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿ n ∈ Z 17 / 21

  25. Examples - + + + + ... ... + ++ 18 / 21

  26. Examples - - + + + + + + + ... ... ... ... ++ + ++ ++ 18 / 21

  27. Examples - - - + + + + + + ... + + + + ... ... ... ... ... ... ++ + + + ++ ++ ++ 18 / 21

  28. Examples - - - + + + + + + ... + + + + ... ... ... ... ... ... ++ + + + ++ ++ ++ - + + + ... ... + + ++ 18 / 21

  29. Examples - - - + + + + + + ... + + + + ... ... ... ... ... ... ++ + + + ++ ++ ++ - - + + + + ... + + ... ... ... ... + + + + ++ ++ 18 / 21

  30. Examples - - - + + + + + + ... + + + + ... ... ... ... ... ... ++ + + + ++ ++ ++ - - + + + + ... + + ... ... ... ... + + + + ++ ++ 18 / 21

  31. Examples - - - + + + + + + ... + + + + ... ... ... ... ... ... ++ + + 1 2 m + ++ ++ ++ m +1 - - + + + + ... + + ... ... ... m +2 2 m -1 ... + + + + ++ ++ u F ( K m ) = 2 m − 1 . 18 / 21

  32. Examples Unknotting numbers for virtual knots with with up to 4 real crossing points K u F ( K ) K u F ( K ) K u F ( K ) K u F ( K ) K u F ( K ) 0.1 0 4.6 1-2 4.20 1 4.34 1 4.48 3 2.1 1 4.7 2 4.21 2 4.35 1 4.49 1 3.1 1 4.8 1-2 4.22 1 4.36 2 4.50 1 3.2 1 4.9 1-2 4.23 1 4.37 3 4.51 1 3.3 2 4.10 1-2 4.24 2-3 4.38 1 4.52 1 3.4 1 4.11 2 4.25 2 4.39 1 4.53 2 3.5 2-3 4.12 1-2 4.26 2 4.40 1 4.54 1 3.6 1-4 4.13 1-2 4.27 1-2 4.41 1 4.55 1 3.7 2-3 4.14 1-2 4.28 2 4.42 1 4.56 1 4.1 2 4.15 2 4.29 2 4.43 2 4.57 1 4.2 1-2 4.16 1 4.30 1-2 4.44 1-2 4.58 1 4.3 2 4.17 1 4.31 1 4.45 2 4.59 1 4.4 1 4.18 1 4.32 1 4.46 1-2 4.60 1 4.5 1 4.19 1-2 4.33 1 4.47 2 4.61 1-4 19 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend