a natural finite element for axisymmetric problem
play

A natural finite element for axisymmetric problem Fran cois Dubois - PowerPoint PPT Presentation

European Finite Element Fair 4 ETH Z urich, 2-3 June 2006 A natural finite element for axisymmetric problem Fran cois Dubois CNAM Paris and University Paris South, Orsay conjoint work with Stefan Duprey University Henri Poincar e


  1. European Finite Element Fair 4 ETH Z¨ urich, 2-3 June 2006 A natural finite element for axisymmetric problem Fran¸ cois Dubois CNAM Paris and University Paris South, Orsay conjoint work with Stefan Duprey University Henri Poincar´ e Nancy and EADS Suresnes.

  2.  A natural finite element for axisymmetric problem 1) Axi-symmetric model problem 2) Axi-Sobolev spaces 3) Discrete formulation 4) Numerical results for an analytic test case 5) About Cl´ ement’s interpolation 6) Numerical analysis 7) Conclusion ETH Z¨ urich, 2-3 June 2006

  3.  Axi-symmetric model problem Motivation : solve the Laplace equation in a axisymmetric domain Find a solution of the form u ( r, z ) exp( i θ ) Change the notation : x ≡ z , y ≡ r Consider the meridian plane Ω of the axisymmetric domain ∂ Ω = Γ 0 ∪ Γ D ∪ Γ N , Γ 0 ∩ Γ D = Ø , Γ 0 ∩ Γ N = Ø , Γ D ∩ Γ N = Ø , Γ 0 is the intersection of Ω with the “axis” y = 0 Then the function u is solution of � � − ∂ 2 u ∂x 2 − 1 ∂ y ∂u + u y 2 = f in Ω y ∂y ∂y ∂u Boundary conditions : u = 0 on Γ D , ∂n = g on Γ N ETH Z¨ urich, 2-3 June 2006

  4.  Axi-Sobolev spaces Test function v null on the portion Γ D of the boundary Integrate by parts relatively to the measure y d x d y. � � u v Bilinear form a ( u , v ) = y ∇ u • ∇ v d x d y + d x d y y Ω Ω � � Linear form < b , v > = f v y d x d y + g v y d γ . Ω Γ N Two notations: √ ( x , y ) = √ y u ( x , y ) , 1 √ ( x , y ) = u √ y u ( x , y ) , u ( x , y ) ∈ Ω . Sobolev spaces: √ ∈ L 2 (Ω) } L 2 a (Ω) = { v : Ω − → I R , v √ ∈ (L 2 (Ω)) 2 } √ ∈ L 2 (Ω) , ( ∇ v ) H 1 a (Ω) = { v ∈ L 2 a (Ω) , v � v ∈ H 1 � √ ∈ (L 2 (Ω)) 2 , a (Ω) , v √ √ √ ∈ L 2 (Ω) , ( ∇ v ) H 2 a (Ω) = √ ∈ (L 2 (Ω)) 4 . (d 2 v ) ETH Z¨ urich, 2-3 June 2006

  5.  Axi-Sobolev spaces Norms and semi-norms: � y | v | 2 d x d y � v � 2 0 , a = Ω � 1 � � y | v | 2 + y |∇ v | 2 | v | 2 � v � 2 1 , a = � v � 2 0 , a + | v | 2 1 , a = d x d y , 1 , a Ω � 1 � � y 3 | v | 2 + 1 y |∇ v | 2 + y | d 2 v | 2 | v | 2 2 , a = d x d y , Ω � v � 2 2 , a = � v � 2 1 , a + | v | 2 2 , a The condition u = 0 on Γ 0 is incorporated inside the choice of the axi-space H 1 a (Ω) . Sobolev space that takes into account the Dirichlet boundary condition V = { v ∈ H 1 a (Ω) , γv = 0 on Γ D } . ETH Z¨ urich, 2-3 June 2006

  6.  Axi-Sobolev spaces � u ∈ V Variational formulation: a ( u , v ) = < b , v > , ∀ v ∈ V . a ( v , v ) = | v | 2 ∀ v ∈ H 1 We observe that 1 , a , a (Ω) , The existence and uniqueness of the solution of problem is (relatively !) easy according to the so-called Lax-Milgram-Vishik’s lemma. See the article of B. Mercier and G. Raugel ! ETH Z¨ urich, 2-3 June 2006

  7.  Discrete formulation Very simple, but fundamental remark v ( x , y ) = √ y ( a x + b y + c ) , ( x , y ) ∈ K ∈ T 2 , Consider � � √ y ∇ v ( x , y ) = a y , 1 Then we have 2 ( a x + 3 b y + c ) . P 1 : the space of polynomials of total degree less or equal to 1 √ ∈ ( P 1 ) 2 . √ ∈ P 1 We have v = ⇒ ( ∇ v ) A two-dimensional conforming mesh T T 0 set of vertices T 1 set of edges T 2 set of triangular elements. ETH Z¨ urich, 2-3 June 2006

  8.  Discrete formulation √ √ ∈ P 1 } . Linear space P = { v, v 1 δ S , v > for v regular, S ∈ T 0 : < � Degrees of freedom < � √ ( S ) δ S , v > = v Proposition 1 . Unisolvance property. K ∈ T 2 be a triangle of the mesh T , δ S , • >, S ∈ T 0 ∩ ∂K Σ the set of linear forms < � √ P defined above. 1 √ Then the triple ( K , Σ , P 1 ) is unisolvant. Proposition 2 . Conformity of the axi-finite element √ 1 ) is conforming in space C 0 (Ω) . The finite element ( K , Σ , P Conformity in the axi-space H 1 Proposition 3 . a (Ω) . √ is included in the axi-space H 1 The discrete space H a (Ω) : √ T ⊂ H 1 H a (Ω) . T ETH Z¨ urich, 2-3 June 2006

  9.  Numerical results for an analytic test case Ω =]0 , 1[ 2 , Γ D = Ø Parameters α > 0 , β > 0, �� � � x β α 2 − 1 Right hand side: f ( y, x ) ≡ y α y 2 + β ( β − 1) x β − 2 Neumann datum: g ( x, y ) = α if y = 1, − βy α x β − 1 if x = 0, βy α if x = 1. Solution: u ( x, y ) ≡ y α x β . Comparison between the present method (DD) the use of classical P 1 finite elements (MR) ETH Z¨ urich, 2-3 June 2006

  10.  Numerical results for an analytic test case ETH Z¨ urich, 2-3 June 2006

  11.  Numerical results for an analytic test case ETH Z¨ urich, 2-3 June 2006

  12.  Numerical results for an analytic test case Numerical study of the convergence properties Test cases : α = 1 / 4, α = 1 / 3, α = 2 / 3 β = 0, β = 1, β = 2 Three norms: � v � 0 , a | v | 1 , a � v � ℓ ∞ Order of convergence easy (?) to see. Example : β = 0 and α = 2 / 3: our axi-finite element has a rate of convergence ≃ 3 for the � • � 0 , a norm. Synthesis of these experiments: same order of convergence than with the classical approach errors much more smaller! ETH Z¨ urich, 2-3 June 2006

  13.  Numerical results for an analytic test case ETH Z¨ urich, 2-3 June 2006

  14.  Numerical results for an analytic test case ETH Z¨ urich, 2-3 June 2006

  15.  Analysis ? Discrete space for the approximation of the variational problem: √ V T = H T ∩ V . � u T ∈ V T Discrete variational formulation: a ( u T , v ) = < b , v > , ∀ v ∈ V T . Estimate the error � u − u T � 1 , a Study the interpolation error � u − Π T u � 1 , a What is the interpolate Π T u ?? Proposition 4 . Lack of regularity. Hypothesis: u ∈ H 2 a (Ω) . √ belongs to the space H 1 (Ω) and √ � 1 , Ω ≤ C � u � 2 , a Then u � u ETH Z¨ urich, 2-3 June 2006

  16.  Analysis ? 2 y √ y u ∇ y + 1 1 √ . Introduce v ≡ u Small calculus: ∇ v = − √ y ∇ u . � � 1 | v | 2 d x d y ≤ y | u | 2 d x d y ≤ C � u � 2 Then 2 , a Ω Ω � � � 1 y |∇ u | 2 � 4 y 3 | u | 2 + 1 |∇ v | 2 d x d y ≤ 2 d x d y ≤ C � u � 2 2 , a . Ω Ω Derive (formally !) two times: 3 1 1 d 2 v = √ y d 2 u 4 y 2 √ y u ∇ y • ∇ y − y √ y ∇ u • ∇ y + Even if u is regular, v has no reason to be continuous. ETH Z¨ urich, 2-3 June 2006

  17. About Cl´  ement’s interpolation S Vicinity Ξ S of the vertex S ∈ T 0 . � 1 < δ C S ∈ T 0 Degree of freedom S , v > = v ( x ) d x d y , | Ξ S | Ξ S � Π C v = < δ C Cl´ ement’s interpolation: S , v > ϕ S . S ∈T 0 ETH Z¨ urich, 2-3 June 2006

  18. About Cl´  ement’s interpolation K Vicinity Z K for a given triangle K ∈ T 2 . | v − Π C v | 0 , K ≤ C h T | v | 1 , Z K , | v − Π C v | 1 , K ≤ C | v | 1 , Z K , | v − Π C v | 1 , K ≤ C h T | v | 2 , Z K . ETH Z¨ urich, 2-3 June 2006

  19.  Numerical analysis � √ � √ Π C u Interpolate Π u by conjugation: Π u = � � Π u ( x, y ) = √ y Π C v ( x, y ) ∈ K ∈ T 2 ( x, y ) , id est Theorem 1 . An interpolation result. Relatively strong hypotheses concerning the mesh T Let u ∈ H 2 a (Ω) and Π u defined above. Then we have � u − Π u � 1 , a ≤ C h T � u � 2 , a . � � 1 1 y | u − √ y Π C v | 2 d x d y y | u − Π u | 2 d x d y = Ω Ω � | v − Π C v | 2 d x d y = � v − Π C v � 2 = 0 , Ω Ω ≤ C h 2 T | v | 2 1 , Ω ≤ C h 2 T � u � 2 2 , a ETH Z¨ urich, 2-3 June 2006

  20.  Numerical analysis � √ y �� � � � � � 1 ∇ y + √ y ∇ v − Π C v v − Π C v v − Π C v ∇ = . 2 √ y � � � | 2 d x d y ≤ y |∇ u − Π u � � Ω � � | v − Π C v | 2 d x d y + 2 y 2 |∇ | 2 d x d y v − Π C v ≤ Ω Ω Ω + = { K ∈ T 2 , dist ( Z K , Γ 0 ) > 0 } Ω − = Ω \ Ω + . ETH Z¨ urich, 2-3 June 2006

  21.  Numerical analysis K S Γ T θ 0 Triangle element K that belongs to the sub-domain Ω + . ETH Z¨ urich, 2-3 June 2006

  22.  Numerical analysis Theorem 2 . First order approximation relatively strong hypotheses concerning the mesh T u ∈ H 2 u solution of the continuous problem: a (Ω) , Then we have � u − u T � 1 , a ≤ C h T � u � 2 , a . Proof: classical with Cea’s lemma! ETH Z¨ urich, 2-3 June 2006

  23.  Conclusion “Axi-finite element” Interpolation properties founded of the underlying axi-Sobolev space First numerical tests: good convergence properties Numerical analysis based on Mercier-Raugel contribution (1982) See also Gmati (1992), Bernardi et al. (1999) May be all the material presented here is well known ?! ETH Z¨ urich, 2-3 June 2006

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend