a multiscale based micromechanics model
play

A Multiscale-Based Micromechanics Model for Functionally Graded - PowerPoint PPT Presentation

A Multiscale-Based Micromechanics Model for Functionally Graded Materials (FGMs) G. H. Paulino Dept. of Civil and Environmental Engineering University of Illinois at Urbana-Champaign H. Yin, L. Sun Dept. of Civil and Environmental Engineering


  1. A Multiscale-Based Micromechanics Model for Functionally Graded Materials (FGMs) G. H. Paulino Dept. of Civil and Environmental Engineering University of Illinois at Urbana-Champaign H. Yin, L. Sun Dept. of Civil and Environmental Engineering The University of Iowa Acknowlegments: NSF US-South America Workshop: Mechanics and Advanced Materials Research and Education Rio de Janeiro; 08/05/2004

  2. Outline • Introduction –FGMs –Micromechanics • Micromechanical Analysis of FGMs • Examples • Conclusions and Extensions

  3. Multiscale and Functionally Graded Materials, 2006 Chicago, Illinois

  4. Ideal Behavior of Material Properties in a Ideal Behavior of Material Properties in a Ceramic- -Metal FGM Metal FGM Ceramic Fracture Toughness High Temperature Resistance Thermal Conductivity Compressive Strength Metal Rich Ceramic Rich CrNi Alloy PSZ ( Ilschner , 1996 ) 500um FGMs Offer a Composite’s Efficiency w/o Stress Concentrations at Sharp Material Interfaces

  5. Functionally Graded Materials Functionally Graded Materials } T Hot Ceramic Phase } Ceramic matrix with metallic inclusions } Transition region } Metallic matrix with ceramic inclusions } Metallic Phase 1-D T Cold 2-D Microstructure 3-D

  6. Microstructure of FGM ZrO 2 /SS FGM 10% ZrO 2 / 90%SS 40% ZrO 2 / 50%SS 90% ZrO 2 / 10%SS SEM Photographs courtesy of Materials Research Laboratory at UIUC

  7. Applications of FGMs Civil Engineering � Fire Protection � Blast Protection Super heat-resistance � Thermal barrier coating for space vehicle components (SiC/C, TUFI) Electro-magnetic & MEMS � Piezoelectric & thermoelectric devices � Sensors & Actuators Biomechanics � Artificial joints � Orthopedic & Dental implants Military � Military vehicles & body armor Optics � Graded refractive index materials Other applications � Nuclear reactor components � Cutting tools (WC/Co), razor blades � Engine components, machine parts

  8. Introduction - Micromechanics • Analytical composite models: Mori-Tanaka, Self-Consistent, Hashin- Shtrikman bounds, etc (Zuiker, 1995; Gasik, 1998) 1. Volume fraction => effective elasticity: unrelated to gradient of volume fraction 2. Non-interaction between particles

  9. Introduction - Micromechanics • Numerical methods FEM: 2D problem (Reiter, Dvorak, et al, 1997, 1998) (Cho, Ha, 2001) Higher-order cell model: 3D problem (Aboudi, Pindera, Arnold, 1999)

  10. Multiscale Framework Macro-scale FGM Micro-scale Effective elasticity Local elastic field Averaged elastic fields Homogenization

  11. φ Notation Two phases: 0% C Particle-Matrix 100% SiC Phase SiC: ( ) Transition zone N φ = X 3 / t t X 3 Phase Carbon: Particle-Matrix X 2 1 φ − 100% C X 1 0% SiC

  12. Theoretical Preparation • Eshelby’s equivalent inclusion method ( ) ( ) = + 0 ε r ε ε r ' 0 0 ε ε ε * + = C ε * 1 C C C 2 2 2 ( ) ( ) ( ) ∫ ε = Γ ε 0 ' ' * ' ' r r r , r d r ε ij ijkl kl Ω ( ) ( ) ( ) ( ) ( )     + = + − 0 0 * C ε r ε r ' C ε r ε r ' ε r     1 2

  13. Theoretical Preparation • Pairwise interaction ( Moschovidis and Mura, 1975 ) The difference of the 2 averaged strain for two- 1 particle solution and one-particle solution 0 -1 ( ) ( ) Z = a ε 1 2 1 2 0 d r r , , a L r r , , -2 ij ijkl kl -3 -4 -5 -2 0 2 Y

  14. Micromechanics of FGMs • RVE of particle-matrix zone ( ) ( ) φ 0 φ 0 X , X 0 σ 3 ,3 3 x 3 x 2 X 3 x 0 X 1 X 2 ( ) ( ) 1 1 <= 0 ε X ε 0 3 0 σ X 1 ( ) φ Given X 3 ( ) ( ) 1 2 = = ε X ? ε X ? 3 3

  15. Micromechanics of FGMs • Averaged strain in the central particle ( ) + ∑ ( ) ( ) ( ) ∞ − 1 1 2 = − ⋅∆ i ε 0 I P C : ε 0 d 0 x , , a 0 = i 1 x ( ) 3 ∑ ∞ i d 0 x , , a = i 1 x 2 ( ) ( ) ∫ = P x 0 d 0 x | , , a d x D x ( ) ( ) ( ) ∫ 2 = 1 P x 0 L 0 x | , , a : ε x d x 3 D

  16. Micromechanics of FGMs • Number density function P ( r|0 ) φ Homogeneous composite : φ N = = P π 3 V 4 a /3 3.5 φ =0.1 Many-body system: φ =0.2 3.0 φ =0.3 ( ) φ =0.4 g x 2.5 ( ) = φ P x 0 | 2.0 π 3 4 a /3 g(r) 1.5 1.0 ( ) g x - radial distribution 0.5 0.0 Percus-Yevick solution 0 2 4 6 8 10 r/a

  17. Micromechanics of FGMs • Number density function P ( r|0 ) for FGMs ( ) 3 g x ( ) ( ) ( )   = φ + − δ φ × 0 x / 0 P x 0 | X e X x   π 3 ,3 3 3 3 4 a x 3 x Neighborhood: Taylor’s expansion 2 Far field: bounded x 1 ( ) φ Average: 0 X 3 δ defines the size of the neighborhood ( ) ( ) ≤ φ + − δ φ × ≤ 0 r / 0 0 X e X x 0.74 3 ,3 3 3

  18. Micromechanics of FGMs • Averaged strain in the central particle [ ] ( ) ( ) ( ) ( ) ( ) ( ) 1 2 2 2 = − ⋅∆ + φ + φ ε 0 I P C : ε 0 D 0 : ε 0 F 0 : ε 0 0 ,3 ,3 ( ) ( ) 3 g r 3 g r ( ) ( ) ∫ ∫ = = − δ r / 2 D L 0 x , , a d x ; F e L 0 x , , a x d x π π 3 3 3 4 a 4 a D D [ ] ( ) ( ) ( ) ( ) ( ) 1 2 2 = − ⋅∆ + φ ε X I P C : ε X X D X : ε X 3 0 3 3 3 3 ( ) ( ) ( ) 2 + φ X F X : ε X ,3 3 3 3 ,3

  19. Averaged Fields • Solve the averaged strain 0 σ [ ] ( ) ( ) ( ) ( ) ( ) 1 2 2 = − ⋅∆ + φ ε X I P C : ε X X D X : ε X 3 0 3 3 3 3 ( ) ( ) ( ) 2 + φ X F X : ε X ,3 3 3 3 ,3 X 3 ( ) ( ) ( ) ( ) 1 2 = φ +  − φ  0 σ X C : ε X 1 X C : ε X   3 1 3 3 2 3 X 2 ( ) 2 Boundary condition: = − 1 0 ε 0 C : σ 0 σ X 2 1 Solution: ( ) ( ) 1 = 1 0 ε X T X : σ 3 3 ( ) ( ) 2 = 2 0 ε X T X : σ 3 3

  20. Uniaxial loading • Governing equations σ 0 33 ( ) ( ) 1 = 1 0 ε X T X : σ 3 3 ( ) ( ) 2 = 2 0 ε X T X : σ 3 3 X ( ) ( ) ( ) ( ) ( ) 3 1 2 ε = φ ε +  − φ  ε X X X 1 X X   33 3 3 33 3 3 33 3 X 2 ( ) ( ) ( ) ( ) ( ) 1 2 ε = φ ε +  − φ  ε X X X 1 X X   11 3 3 11 3 3 11 3 X 1 σ 0 33 ( ) ε σ 0 X ( ) = = − 11 3 E X 33 ; v ( ) ( ) 33 3 13 ε ε X X 33 3 33 3

  21. Shear loading • Governing equations τ 0 13 ( ) ( ) ( ) ( ) ( ) 1 2 ε = φ ε +  − φ  ε X X X 1 X X   13 3 3 13 3 3 13 3 ( ) ( ) 1 = 1 0 ε X T X : σ X 3 3 3 ( ) ( ) X 2 = 2 0 ε X T X : σ 2 3 3 X 1 τ 0 13 τ 0 ( ) µ = X 13 ( ) 13 3 ε 2 X 13 3

  22. Averaged Fields ( ) • Transition zone < φ < d X d 1 3 2 0 σ Phase 1: Particle Phase 2: Particle Phase 2: Matrix Phase 1: Matrix X 3 ( ) ( ) ( ) ( ) ( ) = +  −  I II F X f X F X 1 f X F X   3 3 3 3 3 X 2 Transition function: 0 σ X (Hirano et al 1990, 1991; Reiter, Dvorak, 1998) 1 ( ) ( ) ( ) 1 = E , v v 1 0 ε X T X : σ 33 13 23 3 3 ( ) µ µ ( ) ( ) 2 = 2 0 ε X T X : σ 13 23 3 3

  23. Results and Discussion • Interaction • Drop last two terms => Mori-Tanaka • Gradient of volume fraction [ ] ( ) ( ) ( ) ( ) ( ) 1 2 2 = − ⋅∆ + φ ε X I P C : ε X X D X : ε X 3 0 3 3 3 3 ( ) ( ) ( ) 2 + φ X F X : ε X ,3 3 3 3 ,3

  24. Results and discussion E A =76.0GPa, v A =0.23, E B =3.0GPa, v B =0.4 10 Mori-Tanaka simulation Current simulation 8 Young's modulus E(GPa) 6 4 2 0 0.0 0.1 0.2 0.3 0.4 0.5 Volume fraction φ

  25. Results and discussion v A =0.2 v B =0.45 v A =v B =0.3 0.5 100 E A /E B =50 E A /E B =50 E A /E B =20 E A /E B =20 Effective Young's modulus E/E B 0.4 E A /E B =10 E A /E B =10 Effective Poisson's ratio v E A /E B =5 E A /E B =5 0.3 10 0.2 0.1 Zone II Zone I Zone III (a) (b) Zone II Zone III Zone I 0.0 1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Volume fraction φ Volume fraction φ

  26. Results and discussion E TiC =460GPa, v TiC =0.19, E Ni 3 Al =199GPa, v Ni 3 Al =0.295 E TiC =460GPa, v TiC =0.19, E Ni 3 Al =199GPa, v Ni 3 Al =0.295 500 0.5 Young's modulus E (GPa) 400 0.4 Poisson's ratio v 300 0.3 200 0.2 2 1/2 φ (z)=(X 3 /t) φ (z)=(X 3 /t) 100 0.1 φ (z)=(X 3 /t) φ (z)=X 3 /t 2 1/2 φ (z)=(X 3 /t) φ (z)=(X 3 /t) (a) (b) 0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Location X 3 /t Location X 3 /t

  27. Results and Discussion τ 0 13 E A =320GPa, v A =0.3, E B =28GPa, v B =0.3 1.4 FEM simulation (1997) Self-consistent method (1997) 1.2 Current simulation 0 in Carbon 100% SiC 1.0 0.52t 0.8 Averaged stress σ 13 / τ 13 0.48t t 0.6 0.4 X 2 0.2 100% C 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 X 1 τ 0 volume fraction φ 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend