a maximum a posteriori based algorithm for dynamic load
play

A Maximum A-Posteriori Based Algorithm for Dynamic Load Model - PowerPoint PPT Presentation

A Maximum A-Posteriori Based Algorithm for Dynamic Load Model Parameter Estimation Siming Guo and Prof. Thomas Overbye sguo6@illinois.edu September 21, 2015 Measurement based parameter estimation 1.05 1 Voltage [pu] 0.95 0.9 0.85 0 0.2


  1. A Maximum A-Posteriori Based Algorithm for Dynamic Load Model Parameter Estimation Siming Guo and Prof. Thomas Overbye sguo6@illinois.edu September 21, 2015

  2. Measurement based parameter estimation 1.05 1 Voltage [pu] 0.95 0.9 0.85 0 0.2 0.4 0.6 0.8 Time [s] 2 argmin 𝑀 𝑛𝑓𝑏𝑑 βˆ’ 𝑀 π‘ž 2 Compare π‘ž Load model Load model Load model Simulation Simulation Simulation p p p v p v p v p 1.05 non-injective 1 Simulation Voltage [pu] Ideal 0.95 Load model 0.9 PowerWorld 0.85 0 0.2 0.4 0.6 0.8 Time [s] Simulation Simulation Simulation process process process Source: http://www.tva.gov/power/rightofway/images/high_cost_tree.jpg, http://home.iitk.ac.in/~ankushar/rtds/images/sel451.jpg, http://www.ee.washington.edu/research/pstca/pf30/pg_tca30fig.htm 2 / 11

  3. Test case π‘ž = %𝑀𝑁 %𝑇𝑁 %𝐸𝑀 %𝐷𝑄 %𝑄𝐽/π‘…π‘Ž Source: PSS/E 33.5 Model Library 3 / 11

  4. Impact of measurement noise 2 is insensitive to parameters 𝑀 𝑛𝑓𝑏𝑑 βˆ’ 𝑀 π‘ž Parameter estimate is very sensitive to noise 2 George E. P. Box: β€œEssentially , all models are wrong, but some are useful” 4 / 11

  5. Prediction accuracy 5 / 11

  6. Solution 1: Use multiple disturbances Simulation 1 Load model Simulation 2 v p v p p Simulation Simulation process process 2 + 𝑀 𝑛𝑓𝑏𝑑,π‘”π‘π‘£π‘šπ‘’ 2 βˆ’ 𝑀 π‘ž,π‘”π‘π‘£π‘šπ‘’ 2 2 2 argmin 𝑀 𝑛𝑓𝑏𝑑,π‘”π‘π‘£π‘šπ‘’ 1 βˆ’ 𝑀 π‘ž,π‘”π‘π‘£π‘šπ‘’ 1 2 π‘ž 6 / 11

  7. Solution 1: Results 7 / 11

  8. Solution 2: Maximum a-posteriori (MAP) estimator Simulation Simulation Load model Load model argmax Pr{π‘ž|𝑀 𝑛𝑓𝑏𝑑 } v p v p p p π‘ž Pr 𝑀 𝑛𝑓𝑏𝑑 π‘ž βˆ™ Pr{π‘ž} = argmax Pr{𝑀 𝑛𝑓𝑏𝑑 } π‘ž = argmax Pr 𝑀 𝑛𝑓𝑏𝑑 π‘ž βˆ™ Pr{π‘ž} Simulation Simulation π‘ž process process π‘ˆ 𝑂 𝑔 π‘Š (𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 ) 𝑔 𝑄 (π‘ž π‘œ βˆ’ 𝜈 π‘ž π‘œ ) 𝑒=1 π‘œ=1 𝑔 𝑔 π‘Š 𝑄 𝑀 𝑛𝑓𝑏𝑑 𝑒 𝑀 π‘ž 𝑒 𝜈 π‘ž π‘œ π‘ž π‘œ 8 / 11

  9. Solution 2: Implementation issue 1 π‘ˆ π‘ˆ β‰… 𝑔 π‘Š (𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 ) 𝑒=1 1 π‘ˆ π‘ˆ 2𝑐 exp βˆ’ 𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 1 One problem: Because: argmax Pr 𝑀 𝑛𝑓𝑏𝑑 π‘ž βˆ™ Pr{π‘ž} = 𝑐 π‘ž β€’ 𝑔 π‘Š 1𝜏 = 0.17 𝑒=1 1 β€’ 30 seconds @ 30 samples/s π‘ˆ π‘ˆ = 1 βˆ’ 𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 οƒ  π‘ˆ = 900 π‘ˆ 2𝑐 exp 𝑐 0.17 900 ~10 βˆ’693 𝑔 π‘Š (𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 ) β€’ 𝑒=1 π‘ˆ 𝑒=1 β€’ Smallest double precision βˆ’ 𝑀 𝑛𝑓𝑏𝑑 𝑒 βˆ’ 𝑀 π‘ž 𝑒 = 1 1 𝑔 2𝑐 exp π‘ˆ number ~10 βˆ’308 π‘Š 𝑐 𝑒=1 ~1 9 / 11

  10. Solution 2: Results Prior 𝑔 Data 𝑔 𝑄 dominates π‘Š dominates 10 / 11

  11. Summary Injectivity in load modeling Problem: Lack of injectivity leads to bad objective function… …which leads to poor predictions Solution: MAP estimator 0.17 900 ~10 βˆ’693 Implementation issues 11 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend