a least squares approach for the discretizable distance
play

A least squares approach for the Discretizable Distance Geometry - PowerPoint PPT Presentation

A least squares approach for the Discretizable Distance Geometry Problem with inexact distances Douglas S. Gon calves Department of Mathematics Universidade Federal de Santa Catarina Distance Geometry Theory and Applications DIMACS - New


  1. A least squares approach for the Discretizable Distance Geometry Problem with inexact distances Douglas S. Gon¸ calves Department of Mathematics Universidade Federal de Santa Catarina Distance Geometry Theory and Applications DIMACS - New Jersey - July, 2016 Partially supported by CNPq. Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 1 / 28

  2. Distance Geometry problem Definition (DGP) Given a simple weighted undirected graph G ( V, E, d ) , d : E → R + , and a positive integer K , is there a map x : V → R K such that the constraints � x i − x j � 2 = d 2 ij , ∀{ i, j } ∈ E are satisfied ? Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 2 / 28

  3. Discretizable Distance Geometry problem Definition(DDGP) A DGP is said discretizable if there exists a vertex order { v 1 , v 2 , . . . , v N } ensuring that: (a) G [ { v 1 , v 2 , . . . , v K } ] is a clique; (b) For each i > K : i) { v j , v i } ∈ E , for j = i − K, . . . , i − 2 , i − 1 , ii) V 2 (∆( { v i − K , . . . , v i − 1 } )) > 0 . * The definition ensures that the underlying graph is a chain of ( K + 1) -cliques. Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 3 / 28

  4. Exact distances: a branch-and-prune approach By DDGP assumptions we have that coordinates x i for each vertex v i are obtained by intersecting K spheres: � x i − 1 − x i � 2 d 2 = i − 1 ,i � x i − 2 − x i � 2 d 2 = i − 2 ,i . . . � x i − K − x i � 2 d 2 = i − K,i which leads to at most 2 candidate positions (branching) . Pruning: Direct Distance Feasibility(DDF) |� x h − x i � − d hi | < ǫ, ∀ h : { h, i } ∈ E and h < i − K (Lavor et al., Comp. Optim. App., 52 , 2012) Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 4 / 28

  5. Exact distances: search tree d 14 d 13 d 15 (Liberti et al., Discrete App. Math., 165 , 2014) Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 5 / 28

  6. Exact distances: symmetries and other properties Search space has the structure of a binary tree (with 2 N − K leaf nodes) If pruning distances appear frequently enough it is possible to efficiently explore the search space The number of solutions is a power of 2 Due to the symmetries in the DDGP search tree, it suffices to find the 1st solution: the others can be constructed by partial reflections (Liberti et al., SIAM Review, 56 , 2014) Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 6 / 28

  7. DDGP with noisy distances Consider that exact distances d 2 ij are disturbed by a small noise δ ij d 2 ˜ ij = d 2 ij + δ ij , with | δ ij | ≤ δ , such that � δ d � ≤ √ m δ. Problem: find approximate solutions of � x i − x j � 2 − ˜ d 2 ij = 0 , ∀{ i, j } ∈ E Aim: extend the BP approach for DDGP with noisy distances Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 7 / 28

  8. Noisy distances d 14 d 13 d 15 Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 8 / 28

  9. Noisy distances d 14 d 13 d 15 Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 9 / 28

  10. Noisy distances d 14 d 13 d 15 Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 10 / 28

  11. Noisy distances d 14 d 13 d 15 Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 11 / 28

  12. Noisy distances d 14 d 13 d 15 ¯ d 15 Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 12 / 28

  13. Least-squares, SVD and candidate positions Theorem (Low rank approximation) If σ 1 ≥ σ 2 ≥ · · · ≥ σ r are the nonzero singular values of A ∈ R n × n and A = U Σ V ⊤ , then for each K < r , the distance from A to the closest matrix of rank K is σ K +1 = rank ( B )= K � A − B � 2 , min achieved at B = � K i =1 σ i u i v ⊤ i . Corollary: n � σ 2 rank ( B )= K � A − B � 2 i = min F . i = K +1 (Golub and Van Loan, Matrix Computations , 1996) Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 13 / 28

  14. Candidate positions: 1st candidate ˜ D i : reduced(complete) distance matrix related to { v i − K , . . . , v i − 1 , v i } X i ∈ R K × ( K +1) , X i = [ x i − K . . . x i − 1 x i ] H = I n − 1 G i = − 1 ˜ 2 H ˜ nee ⊤ : centering matrix, D i H : Gram matrix If ˜ G i = U ˜ Σ U ⊤ , then K � ¯ rank ( G )= K � G − ˜ σ k u k u ⊤ G i = arg min G i � 2 = ˜ k , k =1 and, since ¯ G i = ¯ i ¯ X ⊤ X i , candidate positions are given by: X i = (˜ ¯ Σ(1 : K, 1 : K )) 1 / 2 ( U (: , 1 : K )) ⊤ (Sit et al., Bull. Math. Bio., 71 , 2009) Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 14 / 28

  15. Orthogonal Procrustes The first K vectors X = [¯ x i − K . . . x i − 1 ] are used to transform the coordinates ¯ of ¯ x i back to the original reference system: Y = [ x i − K . . . x i − 1 ] (already placed) After centering X c = X ( I − 1 nee ⊤ ) , Y c = Y ( I − 1 nee ⊤ ) , find Q such that Q ⊤ Q = I � QX c − Y c � 2 min F . Given Y c X ⊤ c = U Σ V ⊤ , we have Q = UV ⊤ x ′ i ← Q ¯ x i + t , where t = 1 nY e − Q 1 nXe = y c − Qx c . (Dokmanic et al., IEEE Signal Proces., 32 , 2015) Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 15 / 28

  16. Reflection: 2nd candidate From the assumptions of DDGP, the set { x i − K , . . . , x i − 1 } is affinely independent, generating an affine subspace A of dimension K − 1 . A ⊥ = span { u } Let u be a unit vector orthogonal to A . Then the points in A satisfy u ⊤ x = β A u ⊤ x = β, and the reflection of x i through that u ⊤ x = 0 hyperplane is given by x ′′ i = ( I − 2 uu ⊤ ) x i + 2 βu Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 16 / 28

  17. Consistency Let D i , ˜ D i and ¯ D i be the true, disturbed and approximated reduced distance matrices, respectively, and G i , ˜ G i and ¯ G i their associated Gram matrix. As � G i � 2 = 1 D i � 2 = 1 2 � E i � 2 ≤ 1 2 � E i � F ≤ 1 n ( n − 1) � G i − ˜ 2 � D i − ˜ δ, 2 2 we have that � G i � 2 ≤ 1 n ( n − 1) σ K +1 = � ¯ G i − ˜ G i � 2 ≤ � G i − ˜ ˜ δ. 2 2 σ K +1 → 0 as δ → 0 , implying � ¯ G i − ˜ Therefore ˜ G i � → 0 . But when δ → 0 , ˜ G i → G i , thus ¯ G i → G i . Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 17 / 28

  18. Pruning devices: DDF criterion Direct Distance Feasibility: for all j < i − K : { j, i } ∈ E � � � � x i − x j � 2 − ˜ d 2 � � � ≤ ε 1 . ij How to choose ε 1 ? Let ˜ d be the vector with components ˜ d 2 ij . Choose ε 1 such that MDE ( x ( ε 1 ); ˜ d ) ≤ τ � δ d � , where τ ≥ 1 , x ( ε 1 ) is the first solution found by BP and 1 |� x i − x j � − d ij | � MDE ( x ; d ) = . | E | d ij { i,j }∈ E Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 18 / 28

  19. Rigidity and noisy distances Let x ∈ R KN be a realization of G ( V, E ) , R ∈ R | E |× KN be the rigidity matrix of ( G, x ) and ˜ x the solution of 1 � � 2 � � x i − x j � 2 − ˜ d 2 min . ij 2 x { i,j }∈ E x − x and δ d the vector with entries δ ij = ˜ d 2 ij − d 2 Define δ x = ˜ ij . From the first order Taylor approximation, we have Rδ x = 1 2 δ d . Thus δ x = 1 2 R † δ d . and � δ x � = 1 1 2 � R † �� δ d � = � δ d � . 2 σ r (Anderson et al., SIAM J. Discrete Math., 24 , 2010) Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 19 / 28

  20. Pruning devices: a relaxed DDF criterion Thus, for the solution ˜ x of the perturbed NLSP, we have � d 2 � x j � 2 − ˜ � � � � � 2( x i − x j ) ⊤ ( δx i − δx j ) − δ ij � � ˜ x i − ˜ ≈ � � ≤ 2 � x i − x j �� δx i − δx j � + | δ ij | d ij ) � δ d � ≤ 2 (max d ij ) 2 � δ x � + δ ≤ 2 (max + δ σ r ij ij √ m � � ≤ 2(max d ij ) + 1 δ. σ r ij Therefore, we demand that the approximate solution ¯ x satisfies: ≈ ε 1 � �� � � � � d 2 � d ij ) √ m c 1 + 1 x j � 2 − ˜ ˜ � � � � ¯ x i − ¯ � ≤ γ 2(max δ, ij where γ > 1 and c 1 is an estimate for 1 /σ r . Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 20 / 28

  21. Pruning devices: Singular value ratio Let ˆ D i be the matrix of square distances related to v i and its predecessors(neighbors v j of v i such that j < i ). Missing entries of ˆ D i are obtained from already computed positions x j , j < i . Let G i = − 1 ˆ 2 H ˆ D i H = U Σ V ⊤ A wrong choice of previous candidate positions may forbids the distances in ˆ D i to lead to a realization in R K . Thus, we consider the ratio � K k =1 ˆ σ k ρ = , � n k =1 ˆ σ k and the current tree path is pruned whenever: (1 − ρ ) > ε 2 . Douglas S. Gon¸ calves (UFSC) DDGP - Least squares DGTA 21 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend