a geometrical bound for the sunflower property
play

A geometrical bound for the sunflower property Leo Storme Ghent - PowerPoint PPT Presentation

t -Intersecting constant dimension random network codes A geometrical bound for the sunflower property Leo Storme Ghent University Dept. of Mathematics Krijgslaan 281 9000 Ghent Belgium (joint work with R. Barrolletta, M. De Boeck, E.


  1. t -Intersecting constant dimension random network codes A geometrical bound for the sunflower property Leo Storme Ghent University Dept. of Mathematics Krijgslaan 281 9000 Ghent Belgium (joint work with R. Barrolletta, M. De Boeck, E. Suárez-Canedo, P . Vandendriessche) DARNEC 2015, November 4, 2015 Leo Storme Random network coding

  2. t -Intersecting constant dimension random network codes O UTLINE 1 t -I NTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES A dimension result Leo Storme Random network coding

  3. t -Intersecting constant dimension random network codes A dimension result O UTLINE 1 t -I NTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES A dimension result Leo Storme Random network coding

  4. t -Intersecting constant dimension random network codes A dimension result t -I NTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES t -Intersecting constant dimension random network code: Codewords are k -dimensional vector spaces. Distinct codewords intersect in t -dimensional vector spaces. Classical example: Sunflower: all codewords pass through same t -dimensional vector space. Leo Storme Random network coding

  5. t -Intersecting constant dimension random network codes A dimension result S UNFLOWER Leo Storme Random network coding

  6. t -Intersecting constant dimension random network codes A dimension result L ARGE t - INTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES T HEOREM Large t-intersecting constant dimension random network codes are sunflowers. Proof: Via result from classical coding theory. Leo Storme Random network coding

  7. t -Intersecting constant dimension random network codes A dimension result t -I NTERSECTING BINARY CONSTANT WEIGHT CODES t -intersecting binary constant weight codes Binary constant weight code: codewords have fixed weight w . t -intersecting binary constant weight code: | supp ( c 1 ∩ c 2 ) | = t . Sunflower: all codewords have ones in t fixed positions. Leo Storme Random network coding

  8. t -Intersecting constant dimension random network codes A dimension result t -intersecting constant weight code C . T HEOREM If | C | > ( w − t ) 2 + ( w − t ) + 1 , then C is sunflower. C OROLLARY If t = 1 and | C | = ( w − t ) 2 + ( w − t ) + 1 , then C is sunflower or set of incidence vectors of projective plane of order w. Leo Storme Random network coding

  9. t -Intersecting constant dimension random network codes A dimension result E XTENSION TO t - INTERSECTING CONSTANT DIMENSION RANDOM NETWORK CODES Let c 1 ∈ C , then c 1 = V ( k , q ) ≡ PG ( k − 1 , q ) . Identify c 1 with its binary incidence vector of weight q k − 1 q − 1 . Then | supp ( c 1 ∩ c 2 ) | = | PG ( t − 1 , q ) | = q t − 1 q − 1 . So C is transformed into binary ( q t − 1 q − 1 ) -intersecting binary constant weight code with w = q k − 1 q − 1 . So, if | C | > ( q k − q t q − 1 ) 2 + ( q k − q t q − 1 ) + 1, then C is sunflower. Leo Storme Random network coding

  10. t -Intersecting constant dimension random network codes A dimension result I MPROVEMENT TO UPPER BOUND FOR t = 1 (Bartoli, Riet, Storme, Vandendriessche) Assumptions: C = 1-intersecting constant dimension code of k -spaces. C not sunflower. � 2 � q k − q � q k − q � + 1 − q k − 2 . | C | ≤ + q − 1 q − 1 Leo Storme Random network coding

  11. t -Intersecting constant dimension random network codes A dimension result C ONJECTURE Conjecture: Let C be t -intersecting constant dimension random network code. If | C | > q k + q k − 1 + · · · + q + 1 , then C is sunflower. Leo Storme Random network coding

  12. t -Intersecting constant dimension random network codes A dimension result C OUNTEREXAMPLES TO CONJECTURE Code C of 1-intersecting 3-dimensional spaces in V ( 6 , 2 ) . Conjecture: If | C | > 15, then C is sunflower. Counterexample 1: (Etzion and Raviv) Code C of size 16 which is not sunflower. Counterexample 1: (Bartoli and Pavese) Code C of 1-intersecting 3-dimensional spaces in V ( 6 , 2 ) has size at most 20, and unique example of size 20. Leo Storme Random network coding

  13. t -Intersecting constant dimension random network codes A dimension result A DIMENSION RESULT Let C be ( k − t ) -intersecting constant dimension random network code of k -dimensional codewords. Let C = { π 1 , . . . , π n } . Maximal dimension for sunflower is dim � π 1 , . . . , π n � = k + t ( n − 1 ) . Question: From which dimension for � π 1 , . . . , π n � are we sure that C is sunflower? Leo Storme Random network coding

  14. t -Intersecting constant dimension random network codes A dimension result A DIMENSION RESULT T HEOREM (B ARROLLETA , D E B OECK , S TORME , S UÁREZ -C ANEDO , V ANDENDRIESSCHE ) If dim � π 1 , . . . , π n � ≥ k + ( t − 1 )( n − 1 ) + 2 , then C is sunflower. PROOF: Order codewords. δ i = dim � π 1 , . . . , π i � − dim � π 1 , . . . , π i − 1 � . Order codewords so that δ 2 ≥ δ 3 ≥ · · · ≥ δ n . Sequence ( δ 2 , . . . , δ n ) . δ 2 , . . . , δ n − 1 ≥ t − 1. Leo Storme Random network coding

  15. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP T HEOREM (B ARROLLETA , D E B OECK , S TORME , S UÁREZ -C ANEDO , V ANDENDRIESSCHE ) If dim � π 1 , . . . , π n � ≥ k + ( t − 1 )( n − 1 ) + 2 , then C is sunflower. T HEOREM (B ARROLLETA , D E B OECK , S TORME , S UÁREZ -C ANEDO , V ANDENDRIESSCHE ) If dim � π 1 , . . . , π n � = k + ( t − 1 )( n − 1 ) + 1 , then C is sunflower, or one of two other types of examples. Leo Storme Random network coding

  16. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP Leo Storme Random network coding

  17. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP V = [ k − t + 2 ] fixed. W 1 , . . . , W n are [ k − t + 1 ] in V , not through common [ k − t ] . X 1 , . . . , X n are [ t − 1 ] , and codewords are π i = � W i , X i � , i = 1 , . . . , n . ( δ 2 , . . . , δ n ) = ( t , t − 1 , . . . , t − 1 ) . Leo Storme Random network coding

  18. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP Leo Storme Random network coding

  19. t -Intersecting constant dimension random network codes A dimension result D IMENSION RESULT IS SHARP Type 1: π 1 = � V , N 1 � , . . . , π m = � V , N m � . Type 2: π m + 1 = � V , M m + 1 , p m + 1 � , . . . , π n − 1 = � V , M n − 1 , p n − 1 � . Type 3: π n = � W , X , n 1 , . . . , n m � . ( δ 2 , . . . , δ n ) = ( t , . . . , t , t − 1 , . . . , t − 1 , t + 1 − m ) . Leo Storme Random network coding

  20. t -Intersecting constant dimension random network codes A dimension result Thank you very much for your attention! Leo Storme Random network coding

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend