a bridge between continuous and discrete multid
play

A bridge between continuous and discrete multiD persistence N. - PowerPoint PPT Presentation

A bridge between continuous and discrete multiD persistence N. Cavazza 1 , M. Ethier 2 , P. Frosini 1 , T. Kaczynski 2 , Claudia Landi 3 1 Universit` a di Bologna 2 Universit e de Sherbrooke 3 Universit` a di Modena e Reggio Emilia Applied and


  1. A bridge between continuous and discrete multiD persistence N. Cavazza 1 , M. Ethier 2 , P. Frosini 1 , T. Kaczynski 2 , Claudia Landi 3 1 Universit` a di Bologna 2 Universit´ e de Sherbrooke 3 Universit` a di Modena e Reggio Emilia Applied and Computational Algebraic Topology Bremen, July 15-19, 2013

  2. Motivation Real object Models • How accurately does rank invariant comparison on discrete models approximate that on continuous objects? • To which extent can data resolution be coarsened in order to maintain a certain error threshold on rank invariants comparison? 2 of 15

  3. Outline • Multidimensional persistence of a filtration ◦ sub-level set filtrations ◦ simplicial complex filtrations • From discrete to continuous filtrations: ◦ an obstacle: topological aliasing ◦ a way round: axis-wise linear interpolation • From continuous to discrete: ◦ stable comparison of multi-D persistence • Application: ◦ a procedure to predetermine the model precision required to reach a given error threshold. 3 of 15

  4. 1-D vs. multi-D Persistence 1-D persistence captures the topology of a one-parameter filtration. X 1 X 2 X 3 X 4 mass X 1 X 2 X 3 X 4 darkness 4 of 15

  5. 1-D vs. multi-D Persistence Multi -D persistence captures the topology of a family of spaces filtered along multiple geometric dimensions. darkness X 4 , 1 X 4 , 2 X 4 , 3 X 4 , 4 X 3 , 1 X 3 , 2 X 3 , 3 X 3 , 4 X 2 , 1 X 2 , 2 X 2 , 3 X 2 , 4 X 1 , 1 X 1 , 2 X 1 , 3 X 1 , 4 mass 4 of 15

  6. Filtrations • Sublevelset filtrations: Any continuous function f = ( f 1 ,..., f k ) : X → R k induces sub-level sets: k f − 1 (( − ∞ , α i ]) , α = ( α 1 ,..., α k ) ∈ R k . � X α = i i =1 Setting α = ( α i ) � β = ( β i ) iff α i ≤ β i for every i we get a k -parameter filtration of X by sub-level sets: α � β implies X α ⊆ X β . • Discrete filtrations: Given a simplicial complex K and a function ϕ : V ( K ) → R k , for any α ∈ R k let K α = { σ ∈ K | ϕ ( v ) � α for all vertices v ≤ σ } . 5 of 15

  7. Rank invariant For a filtration F = { X α } α ∈ R k on a triangulable subspace of some R d , ρ F : { ( α , β ) ∈ R k × R k | α ≺ β } → N , ρ F ( α , β ) = dim im H ∗ ( X α ֒ → X β ) . z z X f = ( y , z ) y y x 6 of 15

  8. Rank invariant For a filtration F = { X α } α ∈ R k on a triangulable subspace of some R d , ρ F : { ( α , β ) ∈ R k × R k | α ≺ β } → N , ρ F ( α , β ) = dim im H ∗ ( X α ֒ → X β ) . z z X β α f = ( y , z ) y y ρ f ( α , β ) = 2 x 6 of 15

  9. Rank invariant For a filtration F = { X α } α ∈ R k on a triangulable subspace of some R d , ρ F : { ( α , β ) ∈ R k × R k | α ≺ β } → N , ρ F ( α , β ) = dim im H ∗ ( X α ֒ → X β ) . z z X β α f = ( y , z ) y y ρ f ( α , β ) = 1 x 6 of 15

  10. Rank invariant For a filtration F = { X α } α ∈ R k on a triangulable subspace of some R d , ρ F : { ( α , β ) ∈ R k × R k | α ≺ β } → N , ρ F ( α , β ) = dim im H ∗ ( X α ֒ → X β ) . z z β X α f = ( y , z ) y y ρ f ( α , β ) = 1 x 6 of 15

  11. Continuous vs discrete setting • Sub-level set filtrations are those for which stability results hold: ∀ f , f ′ : X → R k continuous functions, D ( ρ f , ρ f ′ ) ≤ � f − f ′ � ∞ . 7 of 15

  12. Continuous vs discrete setting • Sub-level set filtrations are those for which stability results hold: ∀ f , f ′ : X → R k continuous functions, D ( ρ f , ρ f ′ ) ≤ � f − f ′ � ∞ . • Discrete filtrations are those actually used in computations: Laser Projector CCD scanner Stable comparison of rank invariants obtained from discrete data? 7 of 15

  13. From discrete to continuous filtrations Question: How to extend ϕ : V ( K ) → R k to a continuous function K → R k so that its sub-level set filtration coincides with { K α } α ∈ R k ? 8 of 15

  14. From discrete to continuous filtrations Question: How to extend ϕ : V ( K ) → R k to a continuous function K → R k so that its sub-level set filtration coincides with { K α } α ∈ R k ? Answer: 1-D persistence: use linear interpolation [Morozov, 2008] α 8 of 15

  15. From discrete to continuous filtrations Question: How to extend ϕ : V ( K ) → R k to a continuous function K → R k so that its sub-level set filtration coincides with { K α } α ∈ R k ? Answer: Multi-D persistence: linear interpolation yields topological aliasing ϕ 2 ϕ ( v 1 ) v 1 α ϕ v 0 ϕ ( v 0 ) ϕ 1 8 of 15

  16. Topological Aliasing: numerical experiments Original Linear int. % Diff cat0 vs. cat0-tran1-1 0.046150 0.040576 H 1 -13.737185 0.225394 0.207266 H 0 -8.746249 cat0-tran1-2 vs. cat0-tran2-1 0.034314 0.029188 H 1 -17.562012 0.208451 0.204511 H 0 -1.926547 cat0-tran2-1 vs. cat0-tran2-2 0.045545 0.037061 H 1 -22.891989 0.212733 0.208097 -2.227807 H 0 9 of 15

  17. Axis-wise linear interpolation • Given any σ ∈ K , set µ ( σ ) = max { ϕ ( v ) | v is a vertex of σ } . • Use induction to define ϕ � : K → R k on σ and a point w σ ∈ σ s.t. ◦ For all x ∈ σ , ϕ � ( x ) � ϕ � ( w σ ) = µ ( σ ) ; ◦ ϕ � is linear on any line segment [ w σ , y ] with y ∈ ∂σ . 10 of 15

  18. Axis-wise linear interpolation • Given any σ ∈ K , set µ ( σ ) = max { ϕ ( v ) | v is a vertex of σ } . • Use induction to define ϕ � : K → R k on σ and a point w σ ∈ σ s.t. ◦ For all x ∈ σ , ϕ � ( x ) � ϕ � ( w σ ) = µ ( σ ) ; ◦ ϕ � is linear on any line segment [ w σ , y ] with y ∈ ∂σ . ϕ 2 ϕ ( v 1 ) = µ ( σ ) = ϕ � ( w σ ) v 1 = w σ ϕ ϕ ( v 0 ) v 0 ϕ 1 10 of 15

  19. Axis-wise linear interpolation • Given any σ ∈ K , set µ ( σ ) = max { ϕ ( v ) | v is a vertex of σ } . • Use induction to define ϕ � : K → R k on σ and a point w σ ∈ σ s.t. ◦ For all x ∈ σ , ϕ � ( x ) � ϕ � ( w σ ) = µ ( σ ) ; ◦ ϕ � is linear on any line segment [ w σ , y ] with y ∈ ∂σ . ϕ 2 µ ( σ ) = ϕ � ( w σ ) v 1 ϕ ϕ ( v 1 ) w σ ϕ ( v 0 ) v 0 ϕ 1 10 of 15

  20. Axis-wise linear interpolation • Given any σ ∈ K , set µ ( σ ) = max { ϕ ( v ) | v is a vertex of σ } . • Use induction to define ϕ � : K → R k on σ and a point w σ ∈ σ s.t. ◦ For all x ∈ σ , ϕ � ( x ) � ϕ � ( w σ ) = µ ( σ ) ; ◦ ϕ � is linear on any line segment [ w σ , y ] with y ∈ ∂σ . ϕ 2 µ ( σ ) = ϕ � ( w σ ) v 1 ϕ ϕ ( v 1 ) w σ ϕ ( v 0 ) v 0 ϕ 1 Theorem For any α ∈ R k , K α is a strong deformation retract of K ϕ � � α . 10 of 15

  21. Bridging stability from continuous to discrete persistence • X and Y homeomorphic triangulable spaces (real objects); • f : X → R k , g : Y → R k continuous functions (real measurements); • K ′ and L ′ simplicial complexes with | K ′ | = K , | K ′ | = L (approximated object); ψ : L → R k continuous functions (approximated ϕ : K → R k , ˜ • ˜ measurements); Theorem: If two homeomorphisms ξ : K → X , ζ : L → Y exist s.t. ϕ − f ◦ ξ � ∞ ≤ ε / 4 , � ˜ ψ − g ◦ ζ � ∞ ≤ ε / 4 � ˜ then, for any sufficiently fine subdivision K of K ′ and L of L ′ , � D ( ρ f , ρ g ) − D ( ρ ϕ , ρ ψ ) � ≤ ε , � � ϕ : V ( K ) → R k , ψ : V ( L ) → R k being restrictions of ˜ ϕ and ˜ ψ . 11 of 15

  22. Sketch of the proof • ∃ δ > 0 s.t. max { diam σ | σ ∈ K or σ ∈ L } < δ = ⇒ | D ( ρ ˜ ϕ , ρ ˜ ψ ) − D ( ρ ϕ � , ρ ψ � ) | < ε / 2 . 12 of 15

  23. Sketch of the proof • ∃ δ > 0 s.t. max { diam σ | σ ∈ K or σ ∈ L } < δ = ⇒ | D ( ρ ˜ ϕ , ρ ˜ ψ ) − D ( ρ ϕ � , ρ ψ � ) | < ε / 2 . • ρ ϕ = ρ ϕ � , ρ ψ = ρ ψ � . 12 of 15

  24. Sketch of the proof • ∃ δ > 0 s.t. max { diam σ | σ ∈ K or σ ∈ L } < δ = ⇒ | D ( ρ ˜ ϕ , ρ ˜ ψ ) − D ( ρ ϕ � , ρ ψ � ) | < ε / 2 . • ρ ϕ = ρ ϕ � , ρ ψ = ρ ψ � . • max { diam σ | σ ∈ K or σ ∈ L } < δ = ⇒ | D ( ρ ˜ ϕ , ρ ˜ ψ ) − D ( ρ ϕ , ρ ψ ) | < ε / 2 . 12 of 15

  25. Sketch of the proof • ∃ δ > 0 s.t. max { diam σ | σ ∈ K or σ ∈ L } < δ = ⇒ | D ( ρ ˜ ϕ , ρ ˜ ψ ) − D ( ρ ϕ � , ρ ψ � ) | < ε / 2 . • ρ ϕ = ρ ϕ � , ρ ψ = ρ ψ � . • max { diam σ | σ ∈ K or σ ∈ L } < δ = ⇒ | D ( ρ ˜ ϕ , ρ ˜ ψ ) − D ( ρ ϕ , ρ ψ ) | < ε / 2 . • D ( ρ f , ρ g ) D ( ρ f , ρ f ◦ ξ )+ D ( ρ f ◦ ξ , ρ ˜ ϕ )+ D ( ρ ˜ ϕ , ρ ˜ ≤ ψ ) D ( ρ ˜ ψ , ρ g ◦ ζ )+ D ( ρ g ◦ ζ , ρ g ) + . 12 of 15

  26. Applications to model precision concerns • Aim: Calculate the model precision required to reach a given error threshold 13 of 15

  27. Applications to model precision concerns • Aim: Calculate the model precision required to reach a given error threshold • Method: demonstrated using the following example 13 of 15

  28. Applications to model precision concerns • Aim: Calculate the model precision required to reach a given error threshold • Method: demonstrated using the following example For a dataset of 5000 functions f i : T → R 2 on the torus T , given a set of triangulations of T with 2 2 N simplices (varying N ) we obtain the function ϕ i , N by sampling f i at the vertices of the triangulations. 13 of 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend