a a new an
play

A A New An Analytical S N So Solut ution i n in Sl n Slab Ge b - PowerPoint PPT Presentation

A A New An Analytical S N So Solut ution i n in Sl n Slab Ge b Geome metry y Dean Wang, Tseelmaa Byambaakhuu University of Massachusetts Lowell November 1, 2017 2017 ANS Winter Meeting, Washington DC Why another solution? Previous


  1. A A New An Analytical S N So Solut ution i n in Sl n Slab Ge b Geome metry y Dean Wang, Tseelmaa Byambaakhuu University of Massachusetts Lowell November 1, 2017 2017 ANS Winter Meeting, Washington DC

  2. Why another solution? • Previous work : • Chandrasekhar 1960; Vargas 1997; Warsa 2002; Ganapol 2008; Goncalez 2011, … • Solution methods : Separation of variables, Green’s function, Laplace transfer, and decomposition method. • Our solution techniques : - Eigen decomposition: a system of coupled S N PDEs is decoupled into a system of separate ODEs. - Boundary treatment: the left and right incoming angular flux vectors are combined into one single vector. - Derivation: the whole derivation process is based on linear algebra. - Solution: a truly closed-form analytical expression. 2

  3. Problem Statement Find the solution of the monoenergetic S N equation in slab geometry: L 𝛎 𝑒 𝑒𝑦 𝛀 + Σ ' 𝛀 = Σ ) 2 𝐗𝛀 + 𝑅 2 1 where 𝛀 = 𝜔 / 𝜔 0 … 𝜔 2 𝑼 , angular flux vector; 𝛎 = 𝝂 −𝝂 , 𝑂×𝑂 matrix consisting of Gauss-Legendre quadrature direction cosine values, and 2 𝝂 = diag(𝜈 > ) > 0 , 𝑜 = 1, … , 0 𝐗 = 𝒙 𝒙 𝒙 , 𝑂×𝑂 matrix consisting of Gauss-Legendre quadrature weights, and in which 𝒙 𝑥 / 𝑥 0 … 𝑥 F G 𝑥 / 𝑥 0 … 𝑥 F F 2 2 G 0 matrix, and ∑ >K/ 1 𝑼 ; 𝒙 = 0 × G 𝑥 > = 1 ; 𝟐 = 1 , 1 … ⋮ ⋮ ⋱ 𝑥 F G 𝑥 / 𝑥 0 … 𝑥 F G Σ ' , total macroscopic cross section; Σ M , macroscopic scattering cross section; 3 𝑅 , constant neutron source.

  4. Solution 𝑒𝑦 𝛀 + Σ ' 𝛎 N/ 𝐉 − c 𝑒 2 𝐗 𝛀 = 𝐫 where 𝑑 = S T S U , scattering ratio 𝐫 = V 0 𝛎 N𝟐 𝟐 Matrix eigen decomposition: Σ ' 𝛎 N/ 𝐉 − c 2 𝐗 = 𝐒𝚳𝐒 N/ where 𝚳 = 𝚳 Y 𝚳 N , and in which 2 𝚳 Y = diag(𝜇 > ) , 𝑜 = 1, … 0 ; and 𝑜 = 2 𝚳 N = diag(𝜇 > ) , 0 , … 𝑂 4

  5. Solution 𝑒 𝑒𝑦 𝐒 N/ 𝛀 + 𝚳𝐒 N/ 𝛀 = 𝐒 N/ 𝐫 𝑧 / 𝑧 0 = 𝐒 N𝟐 𝛀 , and 𝐜 = 𝐒 N𝟐 𝐫 , we have Let 𝕑 = ⋮ 𝑧 2 𝑒 𝑒𝑦 𝕑 + 𝚳𝕑 = 𝐜 Integrating gives the analytical solution: 𝕑 = 𝚳 N/ 𝐜 − e N_𝚳 𝒃 where 𝒃 = 𝑏 / 𝑏 0 … 𝑏 2 𝑼 5

  6. Solution N/ 𝐜 Y − e N_𝚳 d 𝒃 Y 𝕑 Y 𝕑 N = 𝚳 Y N/ 𝐜 N − e N_𝚳 e 𝒃 N 𝚳 N where 𝒃 Y 𝒃 N can be determined by the boundary conditions at 𝑦 = 0 and 𝑀 : f , N/ 𝐜 Y − 𝕑 Y 𝒃 Y = 𝚳 Y 𝑦 = 0 h , 𝒃 N = e g𝚳 e 𝚳 N N/ 𝐜 N − e g𝚳 e 𝕑 N 𝑦 = 𝑀 , f where 𝕑 Y h can be determined by the following equation: 𝕑 N 𝟏 f h 𝛀 Y 𝟏 𝐒 𝕑 Y 𝐉 𝐒 𝕑 Y 𝐌 = 𝐉 f + 𝟏 h 𝕑 N 𝕑 N 𝛀 N After some algebra: N/ 𝛀 Y N/ 𝐒 𝟐𝟑 𝐉 − e g𝚳 e f 𝐒 𝟐𝟑 e g𝚳 e 𝟏 𝐒 𝟐𝟑 e g𝚳 e N/ 𝐜 Y 𝕑 Y 𝐒 𝟐𝟐 𝐒 𝟐𝟐 𝚳 Y = 𝐌 − × h 𝐒 𝟑𝟐 e Ng𝚳 d 𝐒 𝟑𝟐 e Ng𝚳 d 𝐒 𝟑𝟐 𝐉 − e Ng𝚳 d N/ 𝐜 N 𝕑 N 𝐒 𝟑𝟑 𝛀 N 𝐒 𝟑𝟑 𝚳 N 6

  7. Solution 𝛀 = 𝛀 Y 𝛀 N = 𝐒 𝕑 Y 𝕑 N f 𝕑 Y = 𝐒 l 𝐉 − e N_𝚳 d + e N_𝚳 d V 𝚳 N𝟐 𝐒 N𝟐 0 𝛎 N𝟐 𝟐 m h e gN_ 𝚳 e e gN_ 𝚳 e 𝕑 N N/ 𝛎 N𝟐 𝟐 = 𝐒𝚳𝐒 N𝟐 𝟐 n / 𝟐 = 𝐒𝚳𝐒 N𝟐 S U 𝐉 − 0 𝐗 S U /No 𝟐 7

  8. Final Solution f S U /No 𝟐 − 𝐒 𝕑 Y S U /No 𝟐 − 𝐒 e N_𝚳 d V / V / e gN_ 𝚳 e 𝐒 N𝟐 × 𝛀 = h 𝕑 N 0 0 Particular Solution Homogenous Solution f S U /No 𝟐 − 𝐒 𝕑 Y S U /No − 𝕏 r 𝐒 e N_𝚳 d V V / Φ = 𝕏 𝑼 𝛀 = e gN_ 𝚳 e 𝐒 N𝟐 × h 𝕑 N 0 Remark: V / t Diffusion limit: 𝛀 ≈ S U /No 𝟐 = 0 𝟐 , as Σ ' → ∞ • 0 f 𝟏 𝛀 ≈ 𝐒 𝕑 Y = 𝛀 Y Thin limit: 𝑴 , as Σ ' → 0 • h 𝕑 N 𝛀 N 8

  9. Eigen Decomposition 𝐵 ≡ Σ ' 𝛎 N/ 𝐉 − c 2 𝐗 = 𝐒𝚳𝐒 N/ Conditioning of Eigenvalues : 𝑣 0 𝑥 0 for Matlab “eig” function Cond 𝜇 = ~1 𝑣, 𝑥 where 𝑣 and 𝑥 are the right and left eigenvectors associated with 𝜇 . Conditioning of Eigenvectors: Cond 𝑣 = 𝑇 𝜇 𝐽 − 𝑄 0 where 𝑇 𝜇 is the reduced resolvent of 𝐵 at 𝜇 , and 𝑄 is the spectral projector associated with 𝜇 . Saad 2011 9

  10. S N Angular Convergence Gauss-Legendre Quadrature Σ • = 1 cm N/ and L = 1 cm 1.0E-01 1.0E-03 1.0E-05 L1 Error 1.0E-07 c = 0 1.0E-09 c = 0.4 𝜁 = 0.98𝑂 N0./ˆ 1.0E-11 c = 0.8 1.0E-13 c = 0.99 1.0E-15 1 10 100 1000 10000 100000 N Σ • = 1 cm N/ and c = 0.8 𝑑 = 0.8 and L = 1 cm 1.0E-01 1.0E-01 sigma_t = 1 cm^-1 1.0E-02 1.0E-02 L = 1 cm sigma_t = 5 cm^-1 1.0E-03 1.0E-03 L = 5 cm 1.0E-04 1.0E-04 sigma_t = 10 cm^-1 1.0E-05 1.0E-05 L = 10 cm L1 Error L1 Error 1.0E-06 1.0E-06 1.0E-07 1.0E-07 1.0E-08 1.0E-08 1.0E-09 1.0E-09 1.0E-10 1.0E-10 1.0E-11 1.0E-11 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 N N Reference: 𝑂 = 2 /‰ = 16394 10

  11. SC Spatial Error – S10 1D Slab 10 cm Σ ' = 2 cm N/ , 𝑅 = 1 cm N• s N/ c = 0.8 1.0E-02 c = 0.2 1.0E-04 c = 0.001 ~𝑃 ℎ 0 1.0E-06 c = 0 1.0E-08 L1 Error 1.0E-10 1.0E-12 ~𝑃 ℎ N/ 1.0E-14 1.0E-16 0.000001 0.00001 0.0001 0.001 0.01 0.1 Mesh Size (cm) 11

  12. Inhomogeneous Case 1.2 Analytical DD 0.8 SC Scalar Flux Σ ' = 50 cm N/ 𝑑 = 0.6 0.4 𝑀2 = 4 cm ℎ = 0.1 cm 𝑅 = 1 cm N• s N/ Σ ' = 2 cm N/ Σ ' = 2 cm N/ 0 𝑑 = 0.6 𝑑 = 0.6 𝑀3 = 2 cm 𝑀1 = 2 cm ℎ = 0.1 cm ℎ = 0.1 cm 𝑅 = 1 cm N• s N/ 𝑅 = 1 cm N• s N/ -0.4 0 10 20 30 40 50 60 70 80 Mesh Points 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend