a 60ghz sub sampling pll using
play

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot - PowerPoint PPT Presentation

A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan 2014 Asia-Pacific Microwave Conference


  1. A 60GHz Sub-Sampling PLL Using A Dual-Step-Mixing ILFD Teerachot Siriburanon, Tomohiro Ueno, Kento Kimura, Satoshi Kondo, Wei Deng, Kenichi Okada, and Akira Matsuzawa Tokyo Institute of Technology, Japan 2014 Asia-Pacific Microwave Conference 2014/11/6

  2. Outline 1 • Background • Issues and Previous Work • Proposed 60GHz Frequency Synthesizer – System Architecture – 20GHz-to-5GHz Dual-Step-Mixing ILFD • Experimental Results • Conclusions 2014/11/6

  3. Requirements for 60GHz PLLs 2 Analog/Digital BB RF front-end 60GHz I VGA ADC 60GHz LPF Digital BB RX VGA ADC LPF 60GHz Q 20GHz PLL 60GHz I LPF DAC 60GHz Digital BB TX LPF DAC 60GHz Q • Out-of-band phase noise<-90dBc/Hz @1MHz to support 16QAM* • In-band phase noise should be lowered depending on the bandwidth of carrier-recovery circuitry** *,** K. Okada, et al ., JSSC 2013 2014/11/6

  4. Issues of mm-wave PLLs 3 20GHz 60GHz QILO VCO 8mW 23mW 36MHz PFD CP LPF 24.7mW 2 58.32GHz, 60.48GHz, ÷ (27,28, ÷ 2 2 ÷ 2 2 ÷ 5 62.64Ghz, 64.80GHz CML CM CM CML 29,30) 14mW • Low out-of-band phase noise by Injection Locking • -96dBc/Hz at 1MHz at 61.56GHz • Large power consumption (64mW for 20GHz) • Does not support channel bonding and all standards – Lower REF clk. required to support all standards (N ) 2014/11/6

  5. PLL Noise Transfer Function 4 Φ ref,n i CP,n Φ VCO,n [ Φ ref ] [ Φ out ] α K vco I CP H (f) 2 π jf Loop Charge VCO PFD Filter Pump 1 N Divider For CP Noise; 1 G ( s ) Φ out N G ( s ) Φ out i CP,n K d 1+ G ( s ) i CP,n K d 1+ G ( s ) (G(s) is open-loop transfer function)  Divide ratio N is no longer contribute to CP/PFD output noise → Useful in a system with large division ratio N X.Gao, et al., JSSC 2009 2014/11/6

  6. 5 Proposed 60GHz Frequency Synthesizer Sub-sampling Loop SEL 2 MUX 2 Pulser 20GHz ÷ 2 Class-C VCO 60GHz QILO 36MHz/ SSPD 40MHz CP 1 LPF REF SEL 3 PFD MUX 3 CP 2 with DZ 58.32GHz, 59.40GHz, 60.48GHz, SEL 1 E n Var 3 61.56GHz, ÷ (54, ÷ 4.5 62.64GHz, MUX 1 55,56,57, 63.72GHz, ÷ 4 ILFD ÷ 5 58,59,60) 64.80GHz Frequency Locked Loop ( E n =1)/ Phase Locked Loop ( E n =0) T. Siriburanon, et. al, RFIC 2014 2014/11/6

  7. 20GHz PFD/CP PLL 6 SEL 2 MUX 2 Pulser 20GHz ÷ 2 Class-C VCO 36MHz/ SSPD 19.44GHz, 40MHz CP 1 LPF REF 19.80GHz, 20.16GHz, 20.52GHz, SEL 3 PFD 20.88GHz, MUX 3 CP 2 with DZ 21.24GHz, 21.60GHz SEL 1 E n Var 3 ÷ (54, ÷ 4.5 MUX 1 55,56,57, N CP ~1200 ÷ 4 4 IL ILFD ÷ 5 58,59,60) Frequency Locked Loop ( E n =1)/ Phase Locked Loop ( E n =0) • PFD and CP 2 are enabled 2014/11/6

  8. 20GHz Sub-sampling PLL 7 Sub-sampling Loop SEL 2 MUX 2 Pulser 20GHz ÷ 2 Class-C VCO 36MHz/ SSPD 19.44GHz, 40MHz CP 1 LPF REF 19.80GHz, 20.16GHz, 20.52GHz, SEL 3 PFD 20.88GHz, MUX 3 CP 2 with DZ 21.24GHz, 21.60GHz SEL 1 E n Var 3 ÷ (54, ÷ 4.5 MUX 1 N ss ~20 55,56,57, ÷ 4 4 IL ILFD ÷ 5 58,59,60) Frequency Locked Loop ( E n =1)/ Phase Locked Loop ( E n =0) • Dead zone in PFD, SSPD and CP 1 are enabled 2014/11/6

  9. 20GHz SS-PLL Noise Modelling 8 REF_Noise -40 SSPD+CP+ Phase noise (dBc/Hz) LF noise VCO noise -60 SSPLL PFD/CP -80 PLL -100 -120 -140 1K 10K 100K 1M 10M Frequency (Hz) 2014/11/6

  10. High-speed Divider Chains 9  Large power 60GHz 5GHz 30GHz 15GHz 5GHz ÷ 4 2 3 Digital  Locking range ILFD ILFD Dividers ILFD mismatch 30GHz 5GHz 20GHz  Narrow locking 6 ÷ 4 Digital ILFD ILFD Dividers range  A technique to increase locking range of high- order-division in ILFDs is necessary 2014/11/6

  11. Conv. Single-Step Injection ILFD 10 +A ( f o @ 0 o ) 0 o 45 o 90 o 135 o +INJ 180 o 225 o 270 o 315 o -A ( f o @ 180 o ) I core I core I core I core 2014/11/6

  12. Conv. Single-Step Injection ILFD 11 +A -A ILFD output ( f o ) time 2 π 0 Input (2 f o ) (direct divide-by-2) time 2 π 4 π 0 Input (4 f o ) (direct divide-by-4) time Disturbing injection in grey Constructive injection in black 2014/11/6

  13. Dual-Step Injection ILFD 12 0 o 45 o 90 o 135 o -B +C -D +A -C +D -A +B 180 o 225 o 270 o 315 o 2 f o @ 0 o 2 f o @ 90 o 2 f o @ 180 o 2 f o @ 270 o b d c a -INJ +INJ (-4 f o ) (+4 f o ) I core I core I core I core T. Siriburanon, et. al, ESSCIRC 2013 2014/11/6

  14. Dual-Step Injection ILFD 13 +A -B +C -D ILFD output . . . . . . . . . . . . . . . . (+ f o ,-f o ) time π 2 π 0 a b c d Common node signal (+2 f o ,-2 f o ) time 5 π π 2 π 3 π 4 π 0 +INJ (+4 f o ) time -INJ (-4 f o ) Only constructive injections exist 2014/11/6

  15. Measured Locking Range 14 • Can cover required range for 60GHz Applications (19-22GHz) 0 -2 -2 on Power [dBm] -4 -4 -6 -6 -8 -8 -10 -10 tion 2.1 .1mW -12 -12 ecti 2.4 .45mW Injec -14 -14 2.6 .65mW -16 -16 -18 -18 17 17 18 18 19 19 20 20 21 21 22 22 23 23 24 24 25 25 Injec ecti tion on Frequenc ency [GHz] 2014/11/6

  16. ILFD Performance Comparison 15 Locking Locking Div. Power Area Features Range* Range* Ratio (mW) (mm 2 ) (GHz) (%) [1] Direct mixing 4 22.6-28 21 8.3 0.140 [2] Direct mixing 4 6.0-7.6 22 6.8 0.007 [3] Direct mixing 4 31.0-41.0 27 3.3 0.002 LC Direct mixing (3 rd harmonic [4] 4 58.5-72.9 21.9 2.2 0.032 boosting) [5] CML + LC ILFD 4 13.5-30.5 77.3 7.3 0.33 [6] Dual-Step Mixing 4 13.4-21.3 31 3.9 0.003 This 2.65 Dual-Step Mixing 4 19-24.2 24 0.002 Work (with buffers) [1] A- SSCC’07 [2] RFIC’04 [3] ISSCC’06 [4] CICC’12 [5] MTT’11 [6] A- SSCC’11 2014/11/6

  17. 20GHz SS-PLL Measurement 16 0.7 mm Freq. (GHz) 19.38 - 22.58(15.3%) 19.44, 19.80, 20.16, Frequencies (GHz) 20.52, 20.88, 21.24, 20GHz Buffer Digital 21.60 Circuits PFD+DZ Ref. Spurs (dBc) -58 dBc @ f REF 0.8 mm 20GHz ILFD CP1 SSPD PN@1MHz(dBc/Hz) ~ -104 CP2 Ref. freq. (MHz) 36/40 (18/20) Out Power (dBm) 0 ~ -4 20GHz Class-C LC-VCO Total Power (mW) 20.2 Loop Filter Process 65nm CMOS 20GHz SS-PLL 2014/11/6

  18. Schematic of 60GHz QILO 17 K. Okada, et al. , JSSC 2013 60GHz Quadrature Injection-Locked Oscillator 2014/11/6

  19. 60GHz QILO Measurement Summary 18 0.6 mm Process 65nm CMOS I+ I- Supply Voltage 1.2 (V) ILO Buffer Tuning Range 58.3-65.4 1.0 mm INJ+ (GHz) ILO Core INJ- P DC (mW) 14.0 ILO Buffer Output Power -10.0 (dBm) Q+ Q- 60GHz QILO 2014/11/6

  20. Phase Noise Characteristics 19 At a carrier frequency of 62.64GHz 2014/11/6

  21. Performance Comparison 20 REF Phase Noise Phase Noise Frequency Power Ref. Freq. @10kHz @10MHz Features (GHz) (mW) (MHz) offset offset [1] 100 57.0-66.0 -66 dBc/Hz -108 dBc/Hz Direct 60GHz QPLL 78 [2] 203.2 59.6-64.0 -65 dBc/Hz -112 dBc/Hz 30GHz PLL + Coupler 76 [3] 100 56.0-62.0 -71 dBc/Hz -109 dBc/Hz 60GHz AD-PLL 48 [4] 40 53.8-63.3 -89 dBc/Hz -108 dBc/Hz 60GHz SS-QPLL 42 Sub-harmonic Injection [5] 18 58.1-65.0 -40 dBc/Hz -117 dBc/Hz 72 20GHz PLL + 60GHz QILO This Sub-harmonic Injection Work 18/20 58.3-65.4 -40 dBc/Hz -115 dBc/Hz 32.8 20GHz PLL + 60GHz QILO (normal) Sub-harmonic Injection This 18/20 58.3-65.4 -69 dBc/Hz -115 dBc/Hz 20GHz SS-PLL + 60GHz 34.2 (SS) QILO [1] K. Scheir, et al ., ISSCC 2009 [2] C. Marcu, et al ., JSSC 2009 [3] W. Wu, et al., ISSCC 2013 [4] V. Szortyka, et al. , ISSCC 2014 [5] W. Deng, et al., JSSC 2013 2014/11/6

  22. Conclusion 21 • Low in-band and out-band phase noise have been achieved through sub-sampling and sub-harmonic injection-locked techniques, respectively • With an assist of a low-power Dual-Step- Mixing ILFD, the proposed 60GHz SS-PLL achieves low power consumption while maintaining good phase noise performance 2014/11/6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend