4 30 2014
play

4/30/2014 Non-Volatile Storage: Magnetic Random Access Memory - PDF document

4/30/2014 Outline Introduction 1G and 2G Spintronic devices Charge, Spin, and Heat Transport in the Spin current Proximity of Metal/Ferromagnet Interface Spin Hall effect Spin Seebeck Effect (SSE) Ssu-Yen Huang Entangled


  1. 4/30/2014 Outline  Introduction  1G and 2G Spintronic devices Charge, Spin, and Heat Transport in the  Spin current Proximity of Metal/Ferromagnet Interface  Spin Hall effect  Spin Seebeck Effect (SSE) Ssu-Yen Huang • Entangled with anomalous Nernst effect (ANE) • Intrinsic spin-dependent thermal transport • Entangled with magnetic proximity effect (MPE) National Taiwan University • Johns Hopkins University Intrinsic Spin Seebeck effect  New MR by MPE (or Spin Hall MR)  Summary 1 1 2 2 Power Consumption of Information Technology G-kW-h 1. High efficiency devices 2. Reduction of heat dissipation Refreshing in “off” state 5% of total electrical power 20% IC Power density approaches that of nuclear reactor Monumental problem METI / Green IT Promotion Council (2008) Can spin provide a solution ? E. Pop, Nano Res 3, 147 (2010) 3 S. Borkar, Intel 4 In the beginning, there was only electronics…….. Three important discoveries in Spintronics Giant Magnetoresistance (GMR) (1988*) *2007 Nobel Electronics Tunnel Magnetoresistance (TMR) (1995) Charge Spin Transfer Torque (STT) (1996, 2000) Gr ü nberg/Fert Areal Density Spintronics 10 +12 bits/in 2 10 +9 increase in density GMR AMR 10 -8 reduction in cost Spin-valve read-head Spin 5 6 1

  2. 4/30/2014 Non-Volatile Storage: Magnetic Random Access Memory Spintronic GMR and TMR Devices (MRAM) GMR TMR P AP “1” Magnetic Tunnel Junction (MTJ) “0” “1” FM1 FM1 free Storage Write insulator metal Read high R Reference FM2 FM2 fixed Low R High R “0” Field Sensing & Non-Volatile Storage Spin-dependent Spin-selective low R scattering tunneling word / sense Advantages: lines Non-volatile memory Key Challenges: High density Short access time Eliminate field writing Low power consumption Universal memory: speed as SRAM, density as DRAM, rewritability as flash Field (1G) Devices 7 8 Spin transfer torque 1G and 2G Spintronic Devices Field Sensing “1” electrical current affects magnetic configurations & Non-Volatile Storage “0” I > I C Storage AP M P torque  sin  Reference High R  Low R Incident electron transmitted e - I reflected without a magnetic field Large M : spin polarizer Small M : M can be rotated (1G) Field Devices (2G) Current (STT )Devices Slonczewski, JMMM 159 , L1 (1996) Requires very large j c > 10 6 A/cm 2 !! Berger, PR B 54 , 9353 (1996), JAP 57 , 1266 (1984), JAP 49 , 2156 (1978) What are new Spintronic Effects for 3G devices? Waintal et al ., PRB 62 , 12317 (2000) 9 10 Various Hall effects Charge, Spin, Thermal Transport in thin films Ordinary Hall effect (E. H. Hall, 1879) y z B ( or M  ) V y x Anomalous Hall effect (E. H. Hall, 1880)  T x  T x j e j e Integer quantum Hall effect (von Klitzing, Nobel 1985) Fractional quantum Hall effect (Stormer, Tsui, Laughlin, Nobel 1998) V y Spin Hall effect E  V  B Inverse spin Hall effect Magnon Hall effect Edwin Hall (1879, 1880) Walther Nernst A student of Henry Rowland @ JHU Topological Hall effect  T x : Nernst Effect  V x : Hall Effect maybe more… 11 12 12 2

  3. 4/30/2014 Hall effect Anomalous Hall effect Spin Hall effect The mechanism of SHE Electron frame 1879 1880 2004 Spin-Orbit Coupling “sees” B  field with gradient B E + Spin-Orbit Coupling Lorentz Force nucleus Charge + Spin Only Spin Only Charge Detect by voltage Detect by voltage Why? Detect by what ? F =q (E + V  B) AHE can be either sign SHE can be either sign Definite Sign q ( v  B ) Definite Axis but Not Definite Sign - electron (Nagaosa et al.,) 13 14 Direct Spin Hall vs. Inverse Spin Hall effects (Optical) Observation of Spin Hall effect Charge current  pure spin accumulation ISHE in Pt detects pure spin current Direct Spin Hall Inverse Spin Hall Spin Current Charge Current   Spin Dependent Scattering Transverse Transverse Charge Imbalance Spin Imbalance (measured by side voltage) (measured by what ?) Optical observation SHE in semiconductors How to detect ? 15 15 Kato et. al. Science 306, 1910 (2004) 16 Spin Calortronics Spin Seebeck Effect Electronics Charge       V S T V S T spin spin        j s j j ( S S )( T )       K. Uchida et al., Nature, 455 , 778, (2008). J c =0 v J c =0 J s  0 up down Spin Heat Spin Caloritronics  T  T Spin Seebeck effect Metals, insulator, or semiconductors Ferromagnetic metals 17 18 18 How to detect J S ? 3

  4. 4/30/2014 Detection of Spin Current by Inverse Spin Hall Effect Long transmission of Spin Current Mystery 2: spin current (mm’s >> spin diffusion length) without dissipation ? ISHE in Pt ( spin – orbit scattering ) converts a spin current into an electromotive force E SHE Cold side Hot side 6 mm 4 mm 4 mm 8 mm FM metals FM insulators ?     E E D J y SHE ISHE S Sign change Proportional to  T Asymmetric in H Mystery 1: Asymmetric in H Spin-wave Conduction-electron spin current Sign change spin current K. Uchida et al., Nature, 455 , 778, (2008). 19 19 K. Uchida et al ., Nature 455 , 778 (2008); Nature Mater. 9 ,894 (2010); Kajiwara et al ., Nature 464, 262 (2010) 20 20 Spin Seebeck effect in broken FM semiconductors Transverse (  x T ) and Longitudinal (  z T ) Spin Seebeck Transmission of spin currents ? GaMnAs/GaAs SSE in FM Metal, Insulator SSE in FM Insulator V j s V j s Pt Pt m m  x T FM metal FM insulator FM Metal    t z     y sd E ( t ) G T T ( t ) tanh( ) intentional vertical  z T th m p SH  t 2 sd x Revision 2 : magnon-phonon drag through substrate intentional in-plane  x T Where is intrinsic SSE? Transverse configuration Longitudinal configuration (  z T ) (  x T ) Adachi et al., APL 97, 252506 (2010) C. M. Jaworski et al ., Nature Materials, 9 , 898 (2010) Jaworski et al., PRL 106, 186601 (2011) 21 21 22 22 Pt strip and in-plane temperature gradient  x T indicated Intrinsic Caloritronic effect (not substrate dominated) ? Pt Pt strip detects j S Intrinsic spin Seebeck effect ? Intrinsic spin-dependent thermal transport ? Pt In-plane  x T v v Pt H Uchida et al., Nature 455 , 778 (2008)  FM  T in-plane Uchida et al., Nat. Mater 9 , 894 (2010) Huang, Wang, Lee, Kwo, and Chien, “Intrinsic spin -dependent thermal transport, ” PRL 107 , 216604 (2011) . Jaworski et al., Nat. Mater 9 , 898 (2010) 23 24 24 4

  5. 4/30/2014 Create in-plane gradient  x T Consistent, Robust, but Strange  Vth(H,  ) Results  V  sin  v Py/Si Asymmetric in H H θ H=2000 Oe Hot Cold 1 2 3 4 5 v Higher T Lower T Heat flow H But this is physically impossible ! θ e.g., opposite signals at  = 90 ° and  = 270 ° . v H H 1 2 3 4 5 Py Py Py  x T  x T 25 26 26 Reversed  T, Same  V !! Out-of-plane  z T !!  x T  x T H=2000 Oe H=2000 Oe Sign change No sign change This is anomalous Nernst effect with perpendicular  z T !! m  z T   x T  T must be out -of-plane ! Transverse geometry, V y (Top view) 27 28 Only  z T !! Thin film on substrate: in-plane and out-of-plane gradient Anomalous Nernst effect: sensitive detector of  z  and  z T Uniform Heating from substrate  z T E ANE   z T  m  z T due to substrate m  x T FM substrate intentional in-plane  x T Same ANE sign and value everywhere In the transverse configuration (  x T) : where does  z T come from? 29 30 30 5

  6. 4/30/2014 What causes out-of-plane gradient  zT ? Electric Current vs. Heat Current Electrical Current Heat Current exclusively in-plane NOT exclusively in-plane Electrical Thermal V - T - V + T + Resistivity (Ωcm) > 1 >1 5x10 -6 10 -6 Thermal conductivity 125 56 30 80 (W/m-K) Substrate Substrate (10 4 x thicker) (10 4 x thicker) Electrically Insulating Not thermally Insulating Thermal conduction through substrate overwhelms! 31 32 Entanglement of ANE (due to  z T) and SSE (due to  x T) Removal of out-of-plane gradient (  z T) Anomalous Nernst Effect (ANE) Spin Seebeck Effect (SSE) sensitive detector of  z  and  z T Substrate-Free sample (  x T only ) v v j s Pt v Planar Nernst Effect Thermal AMR v m m (Transverse) (Longitudinal) z y m FM FM x  x T  x T FM  x T 10 4 x thicker !! E ANE   z T  m ( E SSE ) Pt  j s  m Both along y substrate V ANE and ( V SSE ) Pt additive , both are asymmetric in m (or H) In transverse configuration: SSE and ANE are entangled 33 33 34 S. Y. Huang et. al, Phys. Rev. Lett. 107, 216604 (2011) Intrinsic spin transport properties with in-plane  x T Spin Seebec effects with in-plane  x T and out-of-plane  z T SSE in FM Metal SSE in FM Insulator Substrate-free limit cos 2  M No strong evidence of SSE V j s V j s Longitudinal voltage: thermal AMR Pt Pt m m V th = V th  + ( V th  - V th|| ) cos 2  M Symmetric in H by using a substrate free sample  x T FM metal FM insulator sin2  M  FM Metal z y intentional vertical  z T x intentional in-plane  x T Transverse voltage: Planar Nernst effect PRB 83 , 224401 (2011), PRL 109 , 196602 Transverse configuration Longitudinal configuration sin2  M  (2012), PRL 111 , 187201 (2013), PRB 88 , SSE + ANE SSE 064410 (2013), PRB 88 214304 (2013), Necessary Signatures of FM film with in-plane  x T ! PRB 88 , 184425 (2013), and etc. 35 36 36 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend