3d active edge silicon 3d active edge silicon sensors
play

3D ACTIVE EDGE SILICON 3D ACTIVE EDGE SILICON SENSORS SENSORS - PowerPoint PPT Presentation

3D ACTIVE EDGE SILICON 3D ACTIVE EDGE SILICON SENSORS SENSORS Cinzia Da Via- Vertex 06 - Perugia - September 2006 Cinzia Da Via , Brunel University UK , Brunel University UK Cinzia Da Via OUTLINE Collaboration OUTLINE Pixel


  1. 3D ACTIVE EDGE SILICON 3D ACTIVE EDGE SILICON SENSORS SENSORS Cinzia Da Via’- Vertex 06 - Perugia - September 2006 Cinzia Da Via’ ’, Brunel University UK , Brunel University UK Cinzia Da Via OUTLINE Collaboration OUTLINE � Pixel sensor requirements for replacement and upgrade � Present results Test beam 2006 + Rad. Hardness � Conclusions and Future plans C. Kenney (MBC), L. Reuen, R. Kohrs, M. Mathes, J Velthuis, N. Wermes (Bonn Univ.) J. Hasi, A. Kok, S. Watts (Brunel U.K.) S. Parker (U. of Hawaii) G. Anelli, M. Deile, P. Jarron, J. Kaplon, J. Lozano and the TOTEM Collaboration (CERN), V. Bassetti (Genova), M. Garcia-Scievert, K. Einsweiler (LBL), V. Linhart, T. Slavicheck, T Horadzof, S. Pospisil (Technical University, Praha), M. Ruspa (Torino).

  2. Before choosing a ‘ ‘new new’ ’ pixel sensor pixel sensor Before choosing a technology we need to know: technology we need to know: Cinzia Da Via’- Vertex 06 - Perugia - September 2006 � Efficiency - Functionality � Yield + Large Area + Cost + Large scale production � Reduced dead edge Material Budget – Forward physics- Medical Imaging � Radiation hardness up to 10 16 n/cm 2 � Noise - Capacitance � Speed Reduced bunch crossing, pileups, rate If FZ-silicon is the chosen material then one has to consider alternative sensors geometries: 3D is one of them.

  3. 3D silicon sensors fabricated 3D silicon sensors fabricated at Stanford by J. Hasi Hasi (Brunel) and C. Kenney (MBC) (Brunel) and C. Kenney (MBC) at Stanford by J. Cinzia Da Via’- Vertex 06 - Perugia - September 2006 trench electrode 3D silicon detectors were proposed in 1995 by S. Parker, and active edges in 1997 by C. Kenney. Combine traditional VLSI processing and MEMS (Micro Electro Mechanical Systems) technology. 1. NIMA 395 (1997) 328 2. IEEE Trans Nucl Sci 464 (1999) 1224 Both electrode types are processed inside the 3. IEEE Trans Nucl Sci 482 (2001) 189 4. IEEE Trans Nucl Sci 485 (2001) 1629 detector bulk instead of being implanted on the 5. IEEE Trans Nucl Sci 48 6 (2001) 2405 Wafer's surface. 6. CERN Courier, Vol 43, Jan 2003, pp 23-26 7. NIM A 509 (2003) 86-91 8. MIMA 524 (2004) 236-244 The edge is an electrode! Dead volume at the Edge < 5 microns!

  4. Cinzia Da Via’- Vertex 06 - Perugia - September 2006

  5. Cinzia Da Via’- Vertex 06 - Perugia - September 2006

  6. Key processing steps (25- -32) 32) Key processing steps (25 1- etching the 2-filling them Cinzia Da Via’- Vertex 06 - Perugia - September 2006 Aspect ratio: electrode with dopants D:d = 11:1 d D Step 1-3 field Step 9-13 dope implant, oxidize and fill n+ and fusion bond electrodes LOW PRESSURE wafer WAFER BONDING CHEMICAL VAPOR (mechanical stability) DEPOSITION Si-OH + HO-Si -> Si-O-Si + H 2 O (Electrodes filling with conformal doped polysilicon SiH4 at ~620C) Step 14-17 etch 2P 2 O 5 +5 Si-> 4P + 5 SiO 2 n + window contacts 2B 2 O 3 +3Si -> 4 B +3 SiO 2 and electrodes Step 4-6 pattern Both electrodes appear on both surfaces and etch p + window contacts p 290 μ m Step 18-23 dope and fill p+ Step 7-8 etch p + electrodes electrodes DEEP REACTIVE n ION ETCHING (STS) METAL DEPOSITION (electrodes definition) Shorting electrodes of the same Bosh process Step 24-25 type SiF 4 (gas) +C 4 F 8 (teflon) deposit and pattern with Al for strip electronics Aluminum readout or deposit metal for bump-bonding

  7. Yield + Large area : FP420/Atlas pixel Yield + Large area : FP420/Atlas pixel (bump- -bonding IZM organised by the Bonn Group) bonding IZM organised by the Bonn Group) (bump Atlas chip picture from Cinzia Da Via’- Vertex 06 - Perugia - September 2006 Bekerle Vertex03 DIMENSIONS RO SIGNAL Technology BUFFER/speed 50x400 μ m 2 binary and time 0.25 μ m IBM 2 - 6.4 μ s over threshold 7.2x8mm 2 CMOS6SF 40 MHz -32 3E ATLAS Single Chips -6 4E ATLAS Single Chips -6 2E ATLAS Single Chips -Quarter Size ATLAS Chips -ATLAS Test Structures -Other structures Thickness <250 μ m> p-type substrate 12k Ω cm 10 wafers completed : Yield on one wafer ~80% 10 wafers completed : Yield on one wafer ~80%

  8. 3D FP420/Atlaspix electrode configurations 3D FP420/Atlaspix electrode configurations Cinzia Da Via’- Vertex 06 - Perugia - September 2006 2E 3E 4E 50 μ m 50 μ m 50 μ m 400 μ m 400 μ m 400 μ m n n n p p p 103 μ m 71 μ m 56 μ m V fd ~20V V fd ~8V V fd ~5V

  9. Aug. 17 Sept. 3, 2006 Aug. 17 Sept. 3, 2006 H8 Cern Cern beam line beam line H8 Cinzia Da Via’- Vertex 06 - Perugia - September 2006 scint. x 3D x y scint. y m a e b 100 GeV π - Telescope, daq and on-line Triggers: 3x3 mm 2 , 12x12 mm 2 monitor by Lars Reuen, Atlas pixel setup and data conversion Markus Mathes (Bonn group)

  10. 3D- -2E 2E- -A preliminary A preliminary 3D Cinzia Da Via’- Vertex 06 - Perugia - September 2006 V bias =30V Threshold=4000e - Longer pixels hitmap with the 12x12 mm 2 trigger beam 0 o hitmap with the 3x3 mm 2 trigger

  11. 3E- -G correlation plots and hit maps G correlation plots and hit maps 3E y-y Cinzia Da Via’- Vertex 06 - Perugia - September 2006 x-x V bias =15V Th. = 4000e - Telescope Tot 3D

  12. 4E electrode angular response – – preliminary preliminary 4E electrode angular response V bias = 20V Th. = 4000e - 1 pixel cross section 50 x 250 Cinzia Da Via’- Vertex 06 - Perugia - September 2006 beam 0 o 10 o 30 o 45 o

  13. 4E- - Signal size versus cluster size Signal size versus cluster size 4E Cinzia Da Via’- Vertex 06 - Perugia - September 2006 0 o 10 o 30 o 45 o

  14. 90 Degree data – – run 1228 run 1228 90 Degree data Cinzia Da Via’- Vertex 06 - Perugia - September 2006 beam Several events on one plot

  15. 3D edge sensitivity using 3D edge sensitivity using 13 keV keV X X- -rays at ALS rays at ALS- -Berkeley Berkeley 13 Cinzia Da Via’- Vertex 06 - Perugia - September 2006 X-ray n a c s Measurement Performed using a 2 μ m beam 10-90% < 5 μ m J. Hasi, C. Kenney, J. Morse, S. Parker Electrodes ~ 1.8% Electrodes ~ 1.8% of to of tota tal area l area X-ray micro-beam scan, in 2 µm steps, of a 3D, n bulk and edges, 181 µm thick sensor. The left electrodes are p-type Efficiency measured in test beam ~98%

  16. Efficiency: p and n electrodes response Efficiency: p and n electrodes response Electrodes area ~1.8% of total area Electrodes area ~1.8% of total area Cinzia Da Via’- Vertex 06 - Perugia - September 2006 A. Kok PhD thesis n n n Cell study using 120GeV muons (Cern X5), Telescope Precision ~4 μ m. 50 μ m Electrode response p using 12KeV X-ray 100 μ beam (ALS), beam size m ~ 2 μ m n n 40% reduction in count efficiency at p- - 40% reduction in count efficiency at p electrode electrode J. Hasi, PhD thesis

  17. Efficiency (TOTEM X5 Efficiency (TOTEM X5- -beam area) beam area) Cinzia Da Via’- Vertex 06 - Perugia - September 2006 3D PLANES SCTA READOUT CHIP * 3.195 x 3.9 mm 2 3D SENSOR Thickness=180 μ m n-type Si 4k Ω -cm REFERENCE TELESCOPE S:N=14:1 Efficiency= 98% * IEEE Trans.Nucl.Sci.44:298-302,1997 Telescope track position at 3D Telescope track position at 3D if 3D has a hit if 3D has a hit -TOTEM TDR-CERN

  18. 3D edge sensitivity with high energy muons muons 3D edge sensitivity with high energy Cinzia Da Via’- Vertex 06 - Perugia - September 2006 System Efficiency 1 0.8 0.6 0.4 0.2 0 -2 -1 0 1 2 3 4 5 y [ mm ] System Efficiency 1 1 0.8 0.8 0.6 0.6 Atlas SCTA readout 0.4 0.4 0.2 0.2 Fit width = (3.203 ± 0.004) mm 0 0 -0.5 -0.25 0 0.25 0.5 2.5 2.75 3 3.25 3.5 Phys. width = (3.195 ± 0.001) mm y [ mm ]

  19. Radiation Environment at the LHC and Radiation Environment at the LHC and Expected at the SLHC SLHC Expected at the B-LAYER ~4cm Cinzia Da Via’- Vertex 06 - Perugia - September 2006 Multiple particle environment: 1.8 x10 16 ATLAS NIEL scaling 1 MeV n equivalent Violation observed for oxygen rich materials >85% 1MeV Ch hadrons total n Displacement Damage in Silcon for Different Particles π 1.0E+04 1.0E+03 protons other 1.0E+02 D /(9 5 M e V m b ) 1.0E+01 charged 1.0E+00 hadrons pions 1.0E-01 electrons 1.0E-02 neutrons 1.0E-03 1.0E-04 1.0E-05 ~5x10 14 ~5x10 15 1.0E-10 1.0E-08 1.0E-06 1.0E-04 1.0E-02 1.0E+00 1.0E+02 1.0E+04 particle energy [MeV] Data from CERN-TH/2002-078

  20. MACROSCOPIC PARAMETERS CHANGES OBSERVED AT MACROSCOPIC PARAMETERS CHANGES OBSERVED AT 2 10 years of operation at L=10 1 at R=4 cm 3x10 15 n/cm 2 10 years of operation at L=10 34 cm - s - at R=4 cm 3x10 15 n/cm 34 cm 2 s -2 -1 Cinzia Da Via’- Vertex 06 - Perugia - September 2006 STANDARD 300 μ m n-type SILICON � Signal formation EFFECTIVE DRIFT LENGTH � Charge sharing ~150 μ m e - ~50 μ m h Due to charge trapping � Speed -ve N eff (10 13 /cm 3) ~ V FD (5000V)~ Φ SPACE CHARGE � Double junction TYPE INVERSION depletion from n-contact (e-field) � Charge diffusion REVERSE ANNEALING INCREASE OF -ve N eff temp. dep prop to Φ (I/V ~5x10 -17 Φ) LEAKAGE CURRENT � Noise Time [y] � Thermal runaway � Maintenance

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend