3 comp 1 5 9 3 algorithmic verification
play

3 COMP 1 5 9 3 Algorithmic Verification Safety and Liveness, - PowerPoint PPT Presentation

<latexit


  1. <latexit sha1_base64="P4jUJHo6g1yopyZBD74hiv3LdI=">AIZHicjVRb9NIFD6kXEKW6l4QEhoCBalIa4JYJqVcTSF14QRaIFqanQ2D5xRpnYZjxpG6L8Cn7d/oH9EfvEmWPnRgy7juw5/ubMd75zif1Uq8w2m39fqKxcvHT5SvVq7Y9r12/cvLV6+yhLBibAwyDRifnsywy1ivHQKqvxc2pQ9n2Nn/zevtv/dIomU0n80Q5TPOnLKFYdFUhL0JfVyve2j5GKR1b1vqUqsAOD41o7TkI8zqy0WO8orfd8PcAH2826ULGySuoTsfHV2xSjtsVz63fyNeuM9t+/OxiPx38uMxgMmUD6ySkKo6KuFUln76tHVHqnhGqnOdUJRotU/mok7OfqXZLqHbLqSKDGJeJ0ruOqSw/r5xpiJqkMNWMhOW0Skha5STBUMZzeTmKVl0GAaZWxRGX6fzXdQqNPMubgmGEXIgydGeGuqoXqDeH7paiM4bWHNqa8Z5vFikJacWGV9/yGtNWkMq/dJQYZbt9FYgjNMJZO0Yhwvz9+XWerPR5EsG15hrENxHSrlTa0IYQEAhAHxBisGRrkJDR7xg8aEJK2AmMCDNkKd5HGEONzg7IC8lDEtqjZ0RvxwUa07vjzPh0QFE03YZOCnhc+IRkdxjNVxdfzPn+KsaIuZ3GIa1+wdkn1EKX0P86N/H8v+dcTpYUvuRcFOlMGXFZBgsZdWjV9G5Jv3sOyRPJCumUISsgTBOaIy6GoTWvq8u8y3W7Idk/S4Xd6oH3zj+xGeCaVp9ZjIUzeU9YE15rhLqdCal96yI7mrv8op4x50yhJ3Rvu0zBhzqOMyGsLXrH3K9gj1OmVFNdV8gnj+l28Xo8BYJ3cIFdMCKpFm7f5767majRvfyLaT+cVjPjPFz9keJ70IAW2f1p5IwrH5Bnh+5FBX3OVdHq5n6Zz2lxWZ7R0/VYsJ3MacgonoB97lfM/RAcyXkgc7jpzKvfWMoI4ZS7O2SdlnuC8Iw8M54ZzTmNWK/intf5H6JoR9NOxJ0dwgPKuUkdmuXsVM9nmnKlU45mp3WY/OeQJ6oLQtyd6SB7vtaLyvO6WZ7dfM4Rzum5B4/o7dFvlEw8c0SyJUlZyioM+yZFrfMTuSJTeM5mpgbuW+f9/GVbNo62G97zxvMP2+uv3xRfvSrcg4ewQfPyAl7DWziAQwgq/6Ilc2Vp1f+qV6rlXv5K6VC8WZNVi4qvd/AB3w9Tw=</latexit> Properties Fairness 3 COMP 1 5 9 3 Algorithmic Verification Safety and Liveness, Fairness Dr. Liam O’Connor CSE, UNSW (for now) Term 1 2020 1

  2. Properties Fairness Behaviours Recall The infinite traces of a Kripke structure are called behaviours . So they are infinite sequences of state labels ⊆ (2 P ) ω . How many behaviours for these automata? •

  3. Properties Fairness Behaviours Recall The infinite traces of a Kripke structure are called behaviours . So they are infinite sequences of state labels ⊆ (2 P ) ω . How many behaviours for these automata? • •

  4. Properties Fairness Behaviours Recall The infinite traces of a Kripke structure are called behaviours . So they are infinite sequences of state labels ⊆ (2 P ) ω . How many behaviours for these automata? • • 4

  5. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. • • • • • · · · σ 0 = • • • • • · · · σ 1 = • • • • • · · · σ 2 = • • • • • · · · σ 3 = • • • • • · · · σ 4 = . . . . . . . . . . . . . . .

  6. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. σ δ = • • • • • · · · σ 0 = • • • • • · · · σ 1 = • • • • • · · · σ 2 = • • • • • · · · σ 3 = • • • • • · · · σ 4 = . . . . . . . . . . . . . . .

  7. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. σ δ = • • • • • • · · · σ 0 = • • • • • · · · σ 1 = • • • • • · · · σ 2 = • • • • • · · · σ 3 = • • • • • · · · σ 4 = . . . . . . . . . . . . . . .

  8. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. σ δ = • • • • • • • · · · σ 0 = • • • • • · · · σ 1 = • • • • • · · · σ 2 = • • • • • · · · σ 3 = • • • • • · · · σ 4 = . . . . . . . . . . . . . . .

  9. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. σ δ = • • • • • • • • · · · σ 0 = • • • • • · · · σ 1 = • • • • • · · · σ 2 = • • • • • · · · σ 3 = • • • • • · · · σ 4 = . . . . . . . . . . . . . . .

  10. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. σ δ = • • • • • • • • • · · · σ 0 = • • • • • · · · σ 1 = • • • • • · · · σ 2 = • • • • • · · · σ 3 = • • • • • · · · σ 4 = . . . . . . . . . . . . . . .

  11. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. σ δ = • • • • • • • • • • · · · σ 0 = • • • • • · · · σ 1 = • • • • • · · · σ 2 = • • • • • · · · σ 3 = • • • • • · · · σ 4 = . . . . . . . . . . . . . . .

  12. Properties Fairness Cantor’s Uncountability Argument Result It is impossible in general to enumerate the space of all behaviours. σ δ = • • • • • · · · Proof Suppose there ∃ a • • • • • · · · σ 0 = sequence σ 0 σ 1 σ 2 . . . that enumerates all • • • • • · · · σ 1 = behaviours. Then we can construct a • • • • • · · · σ 2 = devilish sequence σ δ that differs from any • • • • • · · · σ 3 = σ i at the i th position, and thus is • • • • • · · · σ 4 = not in our sequence. Contradiction! . . . . . . . . . . 12 . . . . .

  13. Properties Fairness Metric for Behaviours We define the distance d ( σ, ρ ) ∈ R ≥ 0 between two behaviours σ and ρ as follows: d ( σ, ρ ) = 2 − sup { i ∈ N | σ | i = ρ | i } (we say that 2 −∞ = 0) 13

  14. Properties Fairness Metric for Behaviours We define the distance d ( σ, ρ ) ∈ R ≥ 0 between two behaviours σ and ρ as follows: d ( σ, ρ ) = 2 − sup { i ∈ N | σ | i = ρ | i } (we say that 2 −∞ = 0) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree. 14

  15. Properties Fairness Metric for Behaviours We define the distance d ( σ, ρ ) ∈ R ≥ 0 between two behaviours σ and ρ as follows: d ( σ, ρ ) = 2 − sup { i ∈ N | σ | i = ρ | i } (we say that 2 −∞ = 0) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree. Observations d ( x , y ) = 0 ⇔ x = y 15

  16. Properties Fairness Metric for Behaviours We define the distance d ( σ, ρ ) ∈ R ≥ 0 between two behaviours σ and ρ as follows: d ( σ, ρ ) = 2 − sup { i ∈ N | σ | i = ρ | i } (we say that 2 −∞ = 0) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree. Observations d ( x , y ) = 0 ⇔ x = y d ( x , y ) = d ( y , x ) 16

  17. Properties Fairness Metric for Behaviours We define the distance d ( σ, ρ ) ∈ R ≥ 0 between two behaviours σ and ρ as follows: d ( σ, ρ ) = 2 − sup { i ∈ N | σ | i = ρ | i } (we say that 2 −∞ = 0) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree. Observations d ( x , y ) = 0 ⇔ x = y d ( x , y ) = d ( y , x ) d ( x , z ) ≤ d ( x , y ) + d ( y , z ) 17

  18. Properties Fairness Metric for Behaviours We define the distance d ( σ, ρ ) ∈ R ≥ 0 between two behaviours σ and ρ as follows: d ( σ, ρ ) = 2 − sup { i ∈ N | σ | i = ρ | i } (we say that 2 −∞ = 0) Intuitively, we consider two behaviours to be close if there is a long prefix for which they agree. Observations d ( x , y ) = 0 ⇔ x = y d ( x , y ) = d ( y , x ) d ( x , z ) ≤ d ( x , y ) + d ( y , z ) This forms a metric space and thus a topology on behaviours. 18

  19. Properties Fairness Topology Definition A set S of subsets of U is called a topology if it contains ∅ and U , and is closed under union and finite intersection. Elements of S are called open and complements of open sets are called closed . 19

  20. Properties Fairness Topology Definition A set S of subsets of U is called a topology if it contains ∅ and U , and is closed under union and finite intersection. Elements of S are called open and complements of open sets are called closed . Example (Sierpi´ nski Space) Let U = { 0 , 1 } and S = {∅ , { 1 } , U } . 20

  21. Properties Fairness Topology Definition A set S of subsets of U is called a topology if it contains ∅ and U , and is closed under union and finite intersection. Elements of S are called open and complements of open sets are called closed . Example (Sierpi´ nski Space) Let U = { 0 , 1 } and S = {∅ , { 1 } , U } . Questions What are the closed sets of the Sierpi´ nski space? 21

  22. Properties Fairness Topology Definition A set S of subsets of U is called a topology if it contains ∅ and U , and is closed under union and finite intersection. Elements of S are called open and complements of open sets are called closed . Example (Sierpi´ nski Space) Let U = { 0 , 1 } and S = {∅ , { 1 } , U } . Questions What are the closed sets of the Sierpi´ nski space? Can a set be clopen i.e. both open and closed? 22

  23. Properties Fairness Topology for Metric Spaces Our metric space can be viewed as a topology by defining our open sets as (unions of) open balls : B ( σ, r ) = { ρ | d ( σ, ρ ) < r } This is analogous to open and closed ranges of numbers. 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend