24
play

24 Implementation of Iso-P Triangular Elements IFEM Ch 24 Slide - PDF document

Introduction to FEM 24 Implementation of Iso-P Triangular Elements IFEM Ch 24 Slide 1 Introduction to FEM Peculiarities of Implementation of Iso-P Triangular Elements Special Gauss quadrature rules needed Computation of Jacobian


  1. Introduction to FEM 24 Implementation of Iso-P Triangular Elements IFEM Ch 24 – Slide 1

  2. Introduction to FEM Peculiarities of Implementation of Iso-P Triangular Elements ● Special Gauss quadrature rules needed ● Computation of Jacobian and shape function x-y derivatives complicated by having 3 natural coordinates IFEM Ch 24 – Slide 2

  3. Introduction to FEM Gauss Rules for Straight Sided Triangles Centroid rule: 1 point, degree 1 3 Area A 1 Ω e F ( ζ , ζ , ζ ) d Ω ≈ F ( , , ) 1 1 1 Ω e A 1 2 3 3 3 3 1 2 Three-interior-point rule: 3 points, degree 2 1 Ω e F ( ζ , ζ , ζ ) d Ω ≈ F ( , , ) + F ( , , ) + F ( , , ) 1 1 1 2 1 1 1 2 1 1 1 2 A 3 3 3 6 3 1 2 3 6 6 6 3 6 3 6 Midpoint rule: 3 points, degree 2 1 Ω e F ( ζ , ζ , ζ ) d Ω ≈ F ( , , 0) + F ( 0, , ) + F ( , 0, ) 1 1 1 1 1 1 1 1 1 A 1 2 3 3 2 2 3 2 3 2 2 2 For 6 and 7 point rules see Notes - pictures on next slide IFEM Ch 24 – Slide 3

  4. Introduction to FEM The 5 Simplest Gauss Rules Drawn over Straight Sided Triangles (number annotated near sample point is the weight) (a) rule=1 (b) rule=3 (c) rule= − 3 degree=1 degree=2 degree=2 0.33333 0.33333 0.33333 1.0000 0.33333 0.33333 0.33333 (d) rule=6 (e) rule=7 0.10995 0.12594 degree=4 degree=5 0.13239 0.13239 0.22338 0.22338 0.22500 0.22338 0.12594 0.12594 0.10995 0.10995 0.13239 IFEM Ch 24 – Slide 4

  5. Introduction to FEM Triangles of Arbitrary Geometry (e.g. Curved Sides) The element of area, d Ω , of an iso-P triangular element with n nodes can be expressed as d Ω d Ω = J d ζ d ζ d ζ 3 1 2 where J is the "Jacobian determinant" 1 1 1   n n n ∂ N i ∂ N i ∂ N i � � �   x i x i x i ∂ ζ 1 ∂ ζ 2 ∂ ζ 3   J = 1 2 det   i = 1 i = 1 i = 1     n n n ∂ N i ∂ N i ∂ N i   � � � y i y i y i ∂ ζ 1 ∂ ζ 2 ∂ ζ 3 i = 1 i = 1 i = 1 IFEM Ch 24 – Slide 5

  6. Introduction to FEM Triangles of Arbitrary Geometry (cont'd) Centroid rule Ω e F ( ζ , ζ , ζ ) d Ω ≈ J ( , , ) F ( , , ) 1 1 1 1 1 1 2 1 3 3 3 3 3 3 3 Midpoint rule Ω e F ( ζ , ζ , ζ ) d Ω ≈ J ( , , 0) F ( , , 0 ) 1 1 1 1 1 3 1 2 3 2 2 2 2 1 1 1 1 1 1 1 1 1 + J ( 0, , ) F ( 0 , , ) + J ( , 0, ) F ( , 0 , ) 1 3 2 2 2 3 2 2 2 2 2 etc. This can be compactly expressed by saying that the integration rule is applied to J F - pictures on next slide IFEM Ch 24 – Slide 6

  7. Introduction to FEM The 5 Simplest Gauss Rules Drawn over Arbitrary (Curved Side) Triangles (number annotated near sample point is the weight) (a) rule=1 (b) rule=3 (c) rule= − 3 0.33333 0.33333 1.0000 0.33333 0.33333 0.33333 0.33333 0.12594 0.10995 (d) rule=6 (e) rule=7 0.13239 0.22338 0.22500 0.13239 0.22338 0.22338 0.12594 0.13239 0.10995 0.12594 0.10995 IFEM Ch 24 – Slide 7

  8. Introduction to FEM Triangle Gauss Quadrature Module TrigGaussRuleInfo[{rule_,numer_},point_]:= Module[ {zeta,p=rule,i=point,g1,g2,info=Null}, If [p== 1, info={{1/3,1/3,1/3},1}]; If [p==-3, zeta={1/2,1/2,1/2}; zeta[[i]]=0; info={zeta,1/3}]; If [p== 3, zeta={1/6,1/6,1/6}; zeta[[i]]=2/3; info={zeta,1/3}]; If [p== 6, If [i<=3, g1=(8-Sqrt[10]+Sqrt[38-44*Sqrt[2/5]])/18; zeta={g1,g1,g1}; zeta[[i]]=1-2*g1; info={zeta,(620+Sqrt[213125-53320*Sqrt[10]])/3720}]; If [i>3, g2=(8-Sqrt[10]-Sqrt[38-44*Sqrt[2/5]])/18; zeta={g2,g2,g2}; zeta[[i-3]]=1-2*g2; info={zeta,(620-Sqrt[213125-53320*Sqrt[10]])/3720}]]; If [p== 7, If [i==1,info={{1/3,1/3,1/3},9/40} ]; If [i>1&&i<=4,zeta=Table[(6-Sqrt[15])/21,{3}]; zeta[[i-1]]=(9+2*Sqrt[15])/21; info={zeta,(155-Sqrt[15])/1200}]; If [i>4, zeta=Table[(6+Sqrt[15])/21,{3}]; zeta[[i-4]]=(9-2*Sqrt[15])/21; info={zeta,(155+Sqrt[15])/1200}]]; If [numer, Return[N[info]], Return[Simplify[info]]]; ]; IFEM Ch 24 – Slide 8

  9. Introduction to FEM Triangle Gauss Quadrature (cont'd) Invoked by saying {{ ζ 1, ζ 2, ζ 3},w}=TrigGaussRuleInfo[{rule,numer},point] rule = defines Gauss rule (1, 3, -3, 6 and 7 implemented) numer = True or False to get numeric or exact info, resp. point = index of Gauss point, ranges from 1 through Abs[rule] returns abscissa of sample point and weight IFEM Ch 24 – Slide 9

  10. Introduction to FEM Computation of Shape Function Derivatives 3 5 Illustrated for 6-node 6 quadratic triangle: 2 1 4   N 1 1 1 1 1 1 1 1     N 2   Recall the iso-P x x 1 x 2 x 3 x 4 x 5 x 6   N 3       element definition: y y 1 y 2 y 3 y 4 y 5 y 6   =          N 4   u x u x1 u x2 u x3 u x4 u x5 u x6      N 5   u y u y1 u y2 u y3 u y4 u y5 u y6 N 6 N 1 = ζ 1 ( 2 ζ 1 − 1 ), N 4 = 4 ζ 1 ζ 2 , N 2 = ζ 2 ( 2 ζ 2 − 1 ), N 5 = 4 ζ 2 ζ 3 , N 3 = ζ 3 ( 2 ζ 3 − 1 ), N 6 = 4 ζ 3 ζ 1 . IFEM Ch 24 – Slide 10

  11. Introduction to FEM Partial Derivative Computation (Cont'd)  ζ 1 (2 ζ 1 − 1)  ζ 2 (2 ζ 2 − 1)     ζ 3 (2 ζ 3 − 1)   w = [ w 1 w 2 w 3 w 4 w 5 w 6 ]   4 ζ 1 ζ 2     4 ζ 2 ζ 3   4 ζ 3 ζ 1 where w = w ( ζ ,ζ ,ζ ) can be any quantity interpolated 1 2 3 quadratically over the triangle. Then ∂w ∂ N i ∂ N i ∂ζ 1 ∂ x + ∂ N i ∂ζ 2 ∂ x + ∂ N i ∂ζ 3 � � w i w i ∂ x = ∂ x = ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂w ∂ N i ∂ N i ∂ζ 1 ∂ y + ∂ N i ∂ζ 2 ∂ y + ∂ N i ∂ζ 3 � � w i w i ∂ y = ∂ y = ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ y IFEM Ch 24 – Slide 11

  12. Introduction to FEM Partial Derivative Computation (Cont'd) ∂ζ 1 ∂ζ 1   ∂ x ∂ y   � ∂w � � w i ∂ N i � w i ∂ N i � w i ∂ N i ∂ζ 2 ∂ζ 2 ∂w   � � =   ∂ x ∂ y ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y     ∂ζ 3 ∂ζ 3 ∂ x ∂ y Make w = 1, x, y and stack results rowwise : � ∂ N i � ∂ N i � ∂ N i   ∂ζ 1 ∂ζ 1 ∂ 1 ∂ 1     ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y ∂ x ∂ y   � x i ∂ N i � x i ∂ N i � x i ∂ N i ∂ζ 2 ∂ζ 2 ∂ x ∂ x        =      ∂ x ∂ y  ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y      ∂ y ∂ y ∂ζ 3 ∂ζ 3 � y i ∂ N i � y i ∂ N i � y i ∂ N i   ∂ x ∂ y ∂ x ∂ y ∂ζ 1 ∂ζ 2 ∂ζ 3 IFEM Ch 24 – Slide 12

  13. Introduction to FEM Partial Derivative Computation (Cont'd) As shown in Notes, this system reduces to ∂ζ 1 ∂ζ 1 1 1 1     ∂ x ∂ y   0 0 � x i ∂ N i � x i ∂ N i � x i ∂ N i ∂ζ 2 ∂ζ 2     1 0 ∂ζ 1 ∂ζ 2 ∂ζ 3  =       ∂ x ∂ y    � y i ∂ N i � y i ∂ N i � y i ∂ N i 0 1 ∂ζ 3 ∂ζ 3 ∂ζ 1 ∂ζ 2 ∂ζ 3 ∂ x ∂ y unknowns are grouped here IFEM Ch 24 – Slide 13

  14. Introduction to FEM Partial Derivative Computation (Cont'd) Replacing the shape functions of the 6-node triangle  1 1 x 1 ( 4 ζ 1 − 1 ) + 4 x 4 ζ 2 + 4 x 6 ζ 3 x 2 ( 4 ζ 2 − 1 ) + 4 x 5 ζ 3 + 4 x 4 ζ 1  y 1 ( 4 ζ 1 − 1 ) + 4 y 4 ζ 2 + 4 y 6 ζ 3 y 2 ( 4 ζ 2 − 1 ) + 4 y 5 ζ 3 + 4 y 4 ζ 1 ∂ζ 1 ∂ζ 1   ∂ x ∂ y    1 0 0 ∂ζ 2 ∂ζ 2   x 3 ( 4 ζ 3 − 1 ) + 4 x 6 ζ 1 + 4 x 5 ζ 2 1 0  =      ∂ x ∂ y  y 3 ( 4 ζ 3 − 1 ) + 4 y 6 ζ 1 + 4 y 5 ζ 2 0 1 ∂ζ 3 ∂ζ 3 ∂ x ∂ y or J P = R where J and R are known . IFEM Ch 24 – Slide 14

  15. Introduction to FEM Partial Derivative Computation (Cont'd) Solve J P = R for the partials ∂ζ 1 ∂ζ 1   ∂ x ∂ y ∂ζ 2 ∂ζ 2   P =   ∂ x ∂ y   ∂ζ 3 ∂ζ 3 ∂ x ∂ y Plug these in the chain rule to get the x-y partial derivatives of the shape functions, and use these to form the strain-displacement matrix B IFEM Ch 24 – Slide 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend