2 d gravity with massive matter
play

2 d gravity with massive matter Harold Erbin Lptens , cole Normale - PowerPoint PPT Presentation

2 d gravity with massive matter Harold Erbin Lptens , cole Normale Suprieure (France) SCGSC 2017 Ihp , Paris 17th February 2017 arXiv: 1612.04097 , 1511.06150 1 / 25 Outline Introduction Classical gravity Quantum gravity Mabuchi


  1. 2 d gravity with massive matter Harold Erbin Lptens , École Normale Supérieure (France) SCGSC 2017 Ihp , Paris – 17th February 2017 arXiv: 1612.04097 , 1511.06150 1 / 25

  2. Outline Introduction Classical gravity Quantum gravity Mabuchi spectrum Conclusion 2 / 25

  3. Outline: 1. Introduction Introduction Classical gravity Quantum gravity Mabuchi spectrum Conclusion 3 / 25

  4. Motivations 2 d (quantum) gravity is useful for: ◮ toy model for 4 d quantum gravity ◮ spontaneous dimensional reduction [1605.05694, Carlip] ◮ (non-)critical string theories 4 / 25

  5. Motivations 2 d (quantum) gravity is useful for: ◮ toy model for 4 d quantum gravity ◮ spontaneous dimensional reduction [1605.05694, Carlip] ◮ (non-)critical string theories Real-world requires massive matter 4 / 25

  6. Goals ◮ Study classical gravity coupled to massive matter ◮ Show that (classical) 2 d gravity is not a good toy model ◮ Derive the spectrum of the Mabuchi action (quantum action for the metric) 5 / 25

  7. Outline: 2. Classical gravity Introduction Classical gravity Quantum gravity Mabuchi spectrum Conclusion 6 / 25

  8. Total action Matter ψ + gravity g µν action S [ g , ψ ] = S grav [ g ] + S m [ g , ψ ] Conditions ◮ renormalizability ◮ invariance under diffeomorphisms ◮ no more than first order derivatives ◮ S m [ g , ψ ] obtained from minimal coupling Note: in 2 d g µν has one dynamical component = conformal factor (or Liouville field) φ 7 / 25

  9. Gravity action Gravitational action: two possible terms S grav [ g ] = S EH [ g ] + S µ [ g ] ◮ Einstein–Hilbert � � d 2 σ S EH [ g ] = | g | R = 4 πχ topological invariant (Euler number χ ) → not dynamical, ignore it ◮ Cosmological constant � � d 2 σ S µ [ g ] = µ | g | = µ A [ g ] 8 / 25

  10. Equations of motion ◮ Energy–momentum tensor (with traceless and trace components) T µν = − 4 π δ S δ g µν = T ( m ) µν + 2 πµ g µν � | g | T µν = T µν − T ¯ T = g µν T µν 2 g µν , ◮ Equations of motion δ S δ S δ g µν = 0 , δψ = 0 9 / 25

  11. Equations of motion ◮ Energy–momentum tensor (with traceless and trace components) T µν = − 4 π δ S δ g µν = T ( m ) µν + 2 πµ g µν � | g | T µν = T µν − T ¯ T = g µν T µν 2 g µν , ◮ Equations of motion δ S δ S δ g µν = 0 , δψ = 0 ◮ Metric eom → vanishing of T µν T = T ( m ) + 4 πµ = 0 � T ( m ) T µν = ¯ ¯ = 0 µν → decoupling of traceless component from gravity 9 / 25

  12. Dynamics: conformal matter ◮ Weyl transformation g µν = e 2 ω ( σ ) g ′ µν conformal invariance S m [ η, ψ ] = ⇒ Weyl invariance S m [ g , ψ ] (here ⇐ = also holds) 10 / 25

  13. Dynamics: conformal matter ◮ Weyl transformation g µν = e 2 ω ( σ ) g ′ µν conformal invariance S m [ η, ψ ] = ⇒ Weyl invariance S m [ g , ψ ] (here ⇐ = also holds) ◮ Weyl invariance → traceless T ( m ) µν T ( m ) = 0 = ⇒ µ = 0 from gravity (trace) eom 10 / 25

  14. Dynamics: conformal matter ◮ Weyl transformation g µν = e 2 ω ( σ ) g ′ µν conformal invariance S m [ η, ψ ] = ⇒ Weyl invariance S m [ g , ψ ] (here ⇐ = also holds) ◮ Weyl invariance → traceless T ( m ) µν T ( m ) = 0 = ⇒ µ = 0 from gravity (trace) eom Conclusion Conformal matter coupled to µ � = 0 gravity is inconsistent. 10 / 25

  15. Dynamics: non-conformal matter (1) – model ◮ N scalar fields X i S m = − 1 � � d 2 σ � � g µν ∂ µ X i ∂ ν X i + V ( X i ) | g | 4 π ◮ eom = ∂ µ X i ∂ ν X i − 1 T ( m ) ¯ 2 g µν ( g αβ ∂ α X i ∂ β X i ) = 0 µν V ( X ) = 4 πµ − ∆ X i + 1 ∂ V = 0 2 ∂ X i ∆ = g µν ∇ µ ∇ ν curved space Laplacian 11 / 25

  16. Dynamics: non-conformal matter (2) – solution ◮ Conformal gauge (fix diffeomorphisms) g µν = e 2 φ η µν ◮ Traceless eom T 01 ) = ( ∂ 0 X i ± ∂ 1 X i ) 2 = 0 2( ¯ T 00 ± ¯ → sum of squares X i = X 0 ( ∂ 0 ± ∂ 1 ) X i = 0 = ⇒ ∂ µ X i = 0 = ⇒ i = cst 12 / 25

  17. Dynamics: non-conformal matter (2) – solution ◮ Conformal gauge (fix diffeomorphisms) g µν = e 2 φ η µν ◮ Traceless eom T 01 ) = ( ∂ 0 X i ± ∂ 1 X i ) 2 = 0 2( ¯ T 00 ± ¯ → sum of squares X i = X 0 ( ∂ 0 ± ∂ 1 ) X i = 0 = ⇒ ∂ µ X i = 0 = ⇒ i = cst ◮ Trace and matter eom → constraints on X 0 i ∂ V ( X 0 V ( X 0 i ) = 0 , i ) = 4 πµ ∂ X i 12 / 25

  18. Dynamics: non-conformal matter (2) – solution ◮ Conformal gauge (fix diffeomorphisms) g µν = e 2 φ η µν ◮ Traceless eom T 01 ) = ( ∂ 0 X i ± ∂ 1 X i ) 2 = 0 2( ¯ T 00 ± ¯ → sum of squares X i = X 0 ( ∂ 0 ± ∂ 1 ) X i = 0 = ⇒ ∂ µ X i = 0 = ⇒ i = cst ◮ Trace and matter eom → constraints on X 0 i ∂ V ( X 0 V ( X 0 i ) = 0 , i ) = 4 πµ ∂ X i Conclusion Non-conformal matter coupled to gravity is (at best) trivial. 12 / 25

  19. Dynamics: non-conformal matter (3) – example ◮ Free massive scalars m 2 i X 2 � V ( X i ) = i i ◮ Matter eom m 2 i X 0 X 0 i = 0 = ⇒ i = 0 ∀ m i � = 0 13 / 25

  20. Dynamics: non-conformal matter (3) – example ◮ Free massive scalars m 2 i X 2 � V ( X i ) = i i ◮ Matter eom m 2 i X 0 X 0 i = 0 = ⇒ i = 0 ∀ m i � = 0 ◮ Trace eom i ) 2 = 4 πµ m 2 i ( X 0 � = ⇒ µ = 0 i 13 / 25

  21. Dynamics: non-conformal matter (3) – example ◮ Free massive scalars m 2 i X 2 � V ( X i ) = i i ◮ Matter eom m 2 i X 0 X 0 i = 0 = ⇒ i = 0 ∀ m i � = 0 ◮ Trace eom i ) 2 = 4 πµ m 2 i ( X 0 � = ⇒ µ = 0 i Conclusion Massive free scalar fields coupled to gravity are inconsistent for µ � = 0, trivial for µ = 0. 13 / 25

  22. Degrees of freedom: conformal matter ◮ No cosmological constant, µ = 0 ◮ ∃ Weyl invariance → traceless energy–momentum tensor T ( m ) = 0 14 / 25

  23. Degrees of freedom: conformal matter ◮ No cosmological constant, µ = 0 ◮ ∃ Weyl invariance → traceless energy–momentum tensor T ( m ) = 0 ◮ Metric eom T ( m ) = 0 µν ◮ Weyl invariant eom → independent of the conformal factor → 2 constraints on the matter 14 / 25

  24. Degrees of freedom: conformal matter ◮ No cosmological constant, µ = 0 ◮ ∃ Weyl invariance → traceless energy–momentum tensor T ( m ) = 0 ◮ Metric eom T ( m ) = 0 µν ◮ Weyl invariant eom → independent of the conformal factor → 2 constraints on the matter Conclusion Gravity reduces the dofs of conformal matter from N to N − 2. 14 / 25

  25. Degrees of freedom: non-conformal matter ◮ Action linear in g µν S m = 1 L = − 1 � � � � d 2 σ g µν L µν ( ψ ) + V ( ψ ) | g | L , 2 π 2 ◮ Metric eom � = 0 , T µν = L µν − 1 ¯ � g αβ L αβ T = − V + 4 πµ = 0 2 g µν ◮ Weyl invariant eom → independent of the conformal factor → 3 constraints on the matter 15 / 25

  26. Degrees of freedom: non-conformal matter ◮ Action linear in g µν S m = 1 L = − 1 � � � � d 2 σ g µν L µν ( ψ ) + V ( ψ ) | g | L , 2 π 2 ◮ Metric eom � = 0 , T µν = L µν − 1 ¯ � g αβ L αβ T = − V + 4 πµ = 0 2 g µν ◮ Weyl invariant eom → independent of the conformal factor → 3 constraints on the matter ◮ Abolishing gauge invariance (Weyl) removes dofs Conclusion Gravity reduces the dofs of generic non-conformal matter from N to N − 3, instead of N − 1. 15 / 25

  27. Outline: 3. Quantum gravity Introduction Classical gravity Quantum gravity Mabuchi spectrum Conclusion 16 / 25

  28. Functional integration ◮ Partition functions � d g g µν e − S µ [ g ] Z m | g ] Z = � d g ψ e − S m [ g ,ψ ] Z m [ g ] = ◮ Quantum effects → dynamics for the conformal factor ◮ For computations: fix diffeomorphisms 17 / 25

  29. Conformal gauge ◮ Conformal gauge g = e 2 φ g 0 φ Liouville mode, g 0 (fixed) background metric ◮ Partition function S grav = − ln Z m [ e 2 φ g 0 ] Z [ φ ] = e − S grav [ g 0 ,φ ] Z m [ g 0 ] , Z m [ g 0 ] (ignore ghosts from gauge fixing) 18 / 25

  30. Conformal gauge ◮ Conformal gauge g = e 2 φ g 0 φ Liouville mode, g 0 (fixed) background metric ◮ Partition function S grav = − ln Z m [ e 2 φ g 0 ] Z [ φ ] = e − S grav [ g 0 ,φ ] Z m [ g 0 ] , Z m [ g 0 ] (ignore ghosts from gauge fixing) ◮ Typically [1112.1352, Ferrari-Klevtsov-Zelditch] S grav = S µ + c 6 S L + β 2 S M + · · · S µ cosmological constant, S L Liouville action, S M Mabuchi action 18 / 25

  31. Outline: 4. Mabuchi spectrum Introduction Classical gravity Quantum gravity Mabuchi spectrum Conclusion 19 / 25

  32. Mabuchi action ◮ Kähler potential (work at fixed area) e 2 φ = A � 1 + A 0 � 2 πχ ∆ 0 K A 0 ◮ Mabuchi action (Euclidean) [Mabuchi ’86] S M = 1 d 2 σ √ g 0 � 4 πχ K + 4 πχ � � � � − g µν φ e 2 φ 0 ∂ µ K ∂ ν K + − R 0 4 π A 0 A 20 / 25

  33. Mabuchi action ◮ Kähler potential (work at fixed area) e 2 φ = A � 1 + A 0 � 2 πχ ∆ 0 K A 0 ◮ Mabuchi action (Euclidean) [Mabuchi ’86] S M = 1 d 2 σ √ g 0 � 4 πχ K + 4 πχ � � � � − g µν φ e 2 φ 0 ∂ µ K ∂ ν K + − R 0 4 π A 0 A ◮ eom (same as Liouville) R = 4 πχ A ◮ Note: ill-defined on the torus/cylinder ( χ = 0) 20 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend