2 d approximations
play

2 D Approximations Alistair Boyle Carleton University ICEBI & - PowerPoint PPT Presentation

Modelling with 2 1 2 D Approximations Alistair Boyle Carleton University ICEBI & EIT Stockholm June 1923, 2016 Motivation 2D Models are Wrong (some of the time) A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 2 / 13


  1. Modelling with 2 1 2 D Approximations Alistair Boyle Carleton University ICEBI & EIT Stockholm June 19–23, 2016

  2. Motivation 2D Models are Wrong (some of the time) A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 2 / 13

  3. Motivation 0.5 0.45 2D 0.4 0.35 measurement [Volts] 0.3 0.25 0.2 0.15 0.1 2 1 / 2 -D, 3D, analytic 0.05 0 0 5 10 15 20 25 30 35 measurement # analytic FEM 2.5D FEM 3D FEM 2D A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 3 / 13

  4. Motivation 0 -50 = z [m] -100 -150 -60 -40 -20 0 20 40 60 80 100 120 140 x [m] 2D Models are Still 3D with a uniform field in z and infinite electrodes A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 4 / 13

  5. Motivation � = Electrodes are Finite but detailed 3d models are expensive A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 5 / 13

  6. What If conductivity is uniform in z ... A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 6 / 13

  7. Transform then we can make use of Fourier transforms � ∞ ˜ φ xyz cos(˜ k = kz ) dz (1) φ xy ˜ F 0 −∇ · ( σ xy ∇ ˜ k ) + ˜ k 2 σ xy ˜ k = ˜ φ xy ˜ φ xy˜ Q δ xy (2) � ∞ φ xyz = 2 ˜ k cos( ˜ kz ) d˜ F − 1 k (3) φ xy˜ π 0 A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 7 / 13

  8. Fourier 2 1 2 D 0.035 2 1 / 2 -D, analytic 0.03 3D 0.025 measurement [Volts] 0.02 0.015 0.01 0.005 0 5 10 15 20 25 30 35 measurement # analytic FEM 2.5D FEM 3D A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 8 / 13

  9. Compute Time 4 3 . 27 run time [sec] 3 2 1 . 32 1 0 . 23 2 · 10 − 2 0 analytic 2D 2 1 3D 2 D A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 9 / 13

  10. Compute Time system matrix fwd solve 0.226 sec 0.039 sec 2D 0.222 sec 0.906 sec for 25 k 2 1 2 D 2.966 sec 0.149 sec 3D A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 10 / 13

  11. Another 2 1 2 D Method with a dual-mesh 0 -50 + z [m] -100 -150 -60 -40 -20 0 20 40 60 80 100 120 140 l e x [m] d o m d inverse model r a w r o f same geometry but expensive forward solution A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 11 / 13

  12. Another 2D Method with a dual-mesh 0 0 -50 -50 + z [m] z [m] -100 -100 -150 -150 -60 -40 -20 0 20 40 60 80 100 120 140 -60 -40 -20 0 20 40 60 80 100 120 140 x [m] x [m] forward model inverse model same geometry but in expensive forward solution A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 12 / 13

  13. Fourier 2 1 2 D Now Available in EIDORS % fwd_solve: img.fwd_model.solve = @fwd_solve_2p5d_1st_order ; img. fwd_solve_2p5d_1st_order .k = [ a .. b ]; % optional img. fwd_solve_2p5d_1st_order .method = ’name ’; % optional % k as integration range , default: [0 Inf] % method as ’trapz ’ ’quadv ’ (default) or ’integral ’ % inv_solve: imdl.fwd_model.solve = @fwd_solve_2p5d_1st_order ; imdl.fwd_model.jacobian = @jacobian_adjoint_2p5d_1st_order ; imdl.fwd_model. system_mat = @system_mat_2p5d_1st_order ; A. Boyle, 2016 Carleton University 2 1 / 2 D Approximations 13 / 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend