2 1 explicit implicit surfaces
play

2.1 Explicit & Implicit Surfaces Hao Li - PowerPoint PPT Presentation

Spring 2019 CSCI 621: Digital Geometry Processing 2.1 Explicit & Implicit Surfaces Hao Li http://cs621.hao-li.com 1 Administrative Exercise 1 discussion: Next Time! Hao Li (Instructor) Office Hour: Tue 12:30 PM - 1:30 PM, SAL


  1. Spring 2019 CSCI 621: Digital Geometry Processing 2.1 Explicit & Implicit Surfaces Hao Li http://cs621.hao-li.com 1

  2. Administrative • Exercise 1 discussion: Next Time! • Hao Li (Instructor) • Office Hour: Tue 12:30 PM - 1:30 PM, SAL 244 • Zeng Huang (TA) • Office Hour: TBD, PHE 108 • zenghuan@usc.edu 2

  3. Last Time Polygonal meshes are • Effective representations • Flexible • Efficient, simple, enables unified processing 3

  4. Last Time Connection between Meshes and Graphs • Formalism (valence, connections, subgraph, embedding…) • Definitions (boundary, regular edge, singular edge, closed mesh) • triangulation → triangle mesh B A E F D C I H G K J 4

  5. Last Time Topology • Genus, Euler characteristic • Euler Poincaré formula V − E + F = 2(1 − g ) • Average valence of triangle mesh: 6 • Triangles: F = 2V, E = 3V • Quads: F = V, E = 2V connected k=1 handle ≤ 2k edge loops 5

  6. Last Time 2-Manifold Surface f ( D ✏ [ u, v ]) = D � [ f ( u, v )] • Local Neighborhood is disk-shaped • Guarantees meaningful neighbor enumeration • Non-manifold 6

  7. Last Time Data Structures • Face-Based • Edge-Based, edges always have two faces • Halfedge-Based 7

  8. When is a Triangle Mesh a Manifold? • Every Edge incident to 1 or 2 Triangles • Faces incident to a vertex form closed or open fan closed fan open fan 8

  9. Outline • Surface Representations • Explicit Surfaces • Implicit Surfaces • Conversion 9

  10. Explicit vs. Implicit f ( x ) = ( r cos( x ) , r sin( x )) T Explicit: f ([0 , 2 π ]) • Range of parameterization function x 2 + y 2 − r � F ( x, y ) = Implicit: F ( x, y ) < 0 • Kernel of implicit function F ( x, y ) = 0 F ( x, y ) > 0 10

  11. Explicit vs. Implicit f ( x ) = ( r cos( x ) , r sin( x )) T Explicit: ? • Range of parameterization function • Piecewise approximation x 2 + y 2 − r � F ( x, y ) = Implicit: ? • Kernel of implicit function • Piecewise approximation 11

  12. Explicit vs. Implicit Explicit: • Range of parameterization function • Piecewise approximation • Splines, triangle mesh, points • Easy enumeration • Easy geometry modification Implicit: • Kernel of implicit function • Piecewise approximation • Scalar-valued 3D grid • Easy in/out test • Easy topology modification 12 12

  13. Examples: Fluid Simulation 13

  14. Examples: Collisions 14

  15. Examples: 3D Reconstruction Zippering Poisson Reconstruction 15

  16. Examples: Kinect Fusion 1. Capture 2. Align 3. Fuse http://msdn.microsoft.com/en-us/library/dn188670.aspx 16

  17. Outline • Surface Representations • Explicit Surfaces • Implicit Surfaces • Conversion 17

  18. Polynomial Approximation Polynomials are computable functions p p c i t i = � � f ( t ) = c i φ i ( t ) ˜ i =0 i =0 Taylor expansion up to degree p p 1 i ! g ( i ) (0) h i + O ⇤ h p +1 ⇥ � g ( h ) = i =0 Error for approximation by polynomial f g f ( t i ) = g ( t i ) , 0 ≤ t 0 < · · · < t p ≤ h p 1 � h ( p +1) ⇥ ⇤ ( p + 1)! max f ( p +1) | f ( t ) − g ( t ) | ≤ ( t − t i ) = O i =0 18

  19. Spline Surfaces Piecewise polynomial approximation n m � � c ij N n i ( u ) N m f ( u, v ) = j ( v ) i =0 j =0 19

  20. Spline Surfaces Piecewise polynomial approximation Geometric constraints • Large number of patches • Continuity between patches • Trimming Topological constraints • Rectangular patches • Regular control mesh 20

  21. Polygon Meshes Polygonal meshes are a good compromise O ( h 2 ) • Piecewise linear approximation → error is • Error inversely proportional to #faces • Arbitrary topology surfaces • Piecewise smooth surfaces • Adaptive sampling • Efficient GPU-based rendering/processing 21

  22. Triangle Meshes M = ( { v i } , { e j } , { f k } ) v i ∈ R 3 geometry e i , f i ⊂ R 3 topology 22

  23. Outline • Surface Representations • Explicit Surfaces • Implicit Surfaces • Conversion 23

  24. Implicit Representations Level set of 2D function defines 1D curve 24

  25. Implicit Representations Level set of 3D function defines 2D surface 25

  26. Implicit Representations F ( x, y ) > 0 General implicit function: F ( x, y, z ) < 0 • Interior: F ( x, y ) < 0 F ( x, y, z ) > 0 • Exterior: F ( x, y, z ) = 0 • Surface: F ( x, y ) = 0 Gradient is orthogonal to level set r F Special case • Signed distance function (SDF) • Gradient is unit surface normal r F 26

  27. Signed Distance Function SDF of a circle? General shapes 27

  28. SDF Discretization Regular cartesian 3D grid • Compute signed distance at nodes • Tri-linear interpolation within cells F 011 F 111 F 000 (1 − u ) (1 − v ) (1 − w ) + u (1 − v ) (1 − w ) + F 100 F 010 F 101 F 010 (1 − u ) v (1 − w ) + F 001 (1 − u ) (1 − v ) w + . . . F 110 F 111 u v w F 000 F 100 28

  29. 3-Color Octree 3 Colors: interior,exterior,boundary 1048576 cells 12040 cells 29

  30. Adaptively Sampled Distance Fields 12040 cells 895 cells 30

  31. Binary Space Partitions 895 cells 254 cells 31

  32. Regularity vs. Complexity Implicit surface discretizations O ( h − 3 ) • Uniform, regular voxel grids • Adaptive, 3-color octrees O ( h − 2 ) • Surface-adaptive refinement O ( h − 1 ) • Feature-adaptive refinement • Irregular hierarchies O ( h − 1 ) • Binary space partition (BSP) 32

  33. Literature • Frisken et al., “Adaptively Sampled Distance Fields: A general representation of shape for computer graphics”, SIGGRAPH 2000 • Wu & Kobbel, “Piecewise Linear Approximation of Signed Distance Fields”, VMV 2003 33

  34. Implicit Representations • Natural representation for volumetric data : CT scans, density fields, etc. • Advantageous when modeling shapes with complex and/or changing topology (e.g., fluids) • Very suitable representation for Constructive Solid Geometry (CSG) 34

  35. CSG Example Union F C ∪ S ( · ) = min { F C ( · ) , F S ( · ) } Intersection F C ∩ S ( · ) = max { F C ( · ) , F S ( · ) } Difference F S \ C ( · ) = max { − F C ( · ) , F S ( · ) } 35

  36. CSG Example 36

  37. CSG Example: Milling 37

  38. Outline • Surface Representations • Explicit Surfaces • Implicit Surfaces • Conversion 38

  39. Conversion Explicit to Implicit • Compute signed distance at grid points • Compute distance point-mesh • Fast marching Implicit to Explicit F ( x, y, z ) = 0 • Extract zero-level iso-surface F ( x, y, z ) = C • Other iso-surfaces • Medical imaging, simulations, measurements, … 39

  40. Signed Distance Computation Find closest mesh triangle • Use spatial hierarchies (octree, BSP tree) Distance point-triangle • Distance to plane, edge, or vertex • http://www.geometrictools.com Inside or outside? • Based on interpolated surface normals 40

  41. Signed Distance Computation p = α p i + (1 − α ) p j • Closest point n = α n i + (1 − α ) n j • Interpolated normal ( q − p ) > n < 0 • Inside if n j q p j n p n i p i 41

  42. Fast Marching Techniques • Initialize with exact distance in mesh’s vicinity • Fast-march outwards • Fast-march inwards 42

  43. Literature • Schneider, Eberly, “Geometric Tools for Computer Graphics”, Morgan Kaufmann, 2002 • Sethian, “Level Set and Fast Marching Methods”, Cambridge University Press, 1999 43

  44. Conversion Explicit to Implicit • Compute signed distance at grid points • Compute distance point-mesh • Fast marching Implicit to Explicit F ( x, y, z ) = 0 • Extract zero-level iso-surface F ( x, y, z ) = C • Other iso-surfaces • Medical imaging, simulations, measurements, … 44

  45. 2D: Marching Square 1. Classify grid nodes as inside/outside • Is or ? F ( x i,j ) > 0 < 0 2. Classify cell: 2 4 configurations • In/out for each corner 3. Compute intersection points • Linear interpolation along edges 4. Connect them by edges • Look-up table for edge configuration 45

  46. 2D: Marching Square ? 46

  47. 3D: Marching Cubes 1. Classify grid nodes as inside/outside • Is or F ( x i,j,k ) > 0 < 0 2. Classify cell: 2 8 configurations • In/out for each corner 3. Compute intersection points • Linear interpolation along edges 4. Connect them by edges • Look-up table for path configuration • Disambiguation by modified table [Montani ’94] 47

  48. 3D: Marching Cubes F i,j,k = F ( x i,j,k ) Classify grid nodes based on x i,j,k • Inside or outside Classify all cubes based on F i,j,k • Inside, outside, or intersecting Refined only intersected cells • 3-color adaptive octree O ( h − 2 ) • complexity 48

  49. Intersection Points Linear interpolation along edges x i,j,k · | F i +1 ,j,k | + x i +1 ,j,k · | F i,j,k | | F i,j,k | + | F i +1 ,j,k | 49

  50. Intersection Points Linear interpolation along edges x i,j,k · | F i,j +1 ,k | + x i,j +1 ,k · | F i,j,k | | F i,j,k | + | F i,j +1 ,k | 50

  51. Intersection Points Linear interpolation along edges x i,j,k · | F i,j,k +1 | + x i,j,k +1 · | F i,j,k | | F i,j,k | + | F i,j,k +1 | 51

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend