161 17
play

161-17 Stochastic Variational Lecture Inference I Kaushal - PowerPoint PPT Presentation

161-17 Stochastic Variational Lecture Inference I Kaushal Panchi Scribes : Jay DeYoung Recap Vaniatianal Inference : Approximate Goal Posterior : 17,13 ) pH )p( 137 Generative Model 13 ) pc plx ,z : = , Approx


  1. 161-17 Stochastic Variational Lecture Inference I Kaushal Panchi Scribes : Jay DeYoung

  2. Recap Vaniatianal Inference : Approximate Goal Posterior : 17,13 ) pH )p( 137 Generative Model 13 ) pc plx × ,z : = , Approx Variational pit ) 1×7 7 ;¢)q( p( 7,13 qc : I ( ELBO ) Lower Bound Evidence Objective : :O )[ lofty , 7,13 ) pcx , ] LC 10,9 ) Etqn = qcp :O , , . , , KL( qczsqlqlpsi ) 11pA ,pl×)) log × ) pl = -

  3. Diniohlet Allocation Model Latent Generative : Generative model : Pu Dirichetlw ) on Qd ~ Bh Yan Oa Dirichlet ( x ) K ~ Discrete ( Od ) % 2- dn~ Zan Discrete ( Pa ) Na 7dn=h ydnl ~ D = ( l§ ) ) § Xdlttd , p( ,p)p(7d p ) p ( 7 x .pl/3u)p(7did)=/dOdp(7d1Od)p(0dj4 , , . )

  4. Parameters Global LDA Local us Generative Model 13 ) , pspttsplp pix pix ) 17 ,z : = , Approx :D ) Variational pet , 131×7 ) qcp get :p : = = ( ¥ ) ) .pl/3u ) , B) pcxdltd pltd p ) pcx 7 , , , . - ( % old ) ) II. :D ! alpa 917419113 ) 917ns - - - , Dui local parameters global old parameters i d ) all ) ( only doc does depend depend I on an

  5. Variational Stochastic Inference Wikipedia Problem 5Mt If has entries : we . wanted VBEM updates then to do need we 114,9 ) £19,7 I ) of = arggnax = angqmax Now full each of updates these requires pass a - the 5Mt documents over I Optimize Solution stochastic with ; gradient descent

  6. Gradient Stochastic Descent E IT get t Optimize of gradient Idea gradient with estimate objective noisy i " It I " LID ) = , I I Approximation Step sire of the Requirement Gradient I estimate should be : unbiased Dfid , LCD ) I ) = Robbins - Monro Requirement 2 conditions ; as as / Finite I [ ( Int ' ft ft Los = as mean variance displacement ) displacement t ) te in = , ,

  7. Stochastic Variation Inference al Approximation : batch Compute for of ELBO does £17 LC 4,9 ) ) = myax , ] an ;¢,qµa[ by # PgYhIIhT$⇒ my = ' [ 68 qq.FI 7 app ) plxa § , # 91Pa ; 9) qaa = mgay 1 log , ] :D # qcp , , , - q( p

  8. Stochastic Variation Inference al Approximation : batch Compute for of ELBO docs ' [ 68 qq.FI Zapp ) { ( mgay plxa 217 , # ) ; 9) 91ps ' = qaa , ] ) , , , I log I :D # "→"9(7bi¢b qcp - q( p " } ) xb~ ( { Choose batch Uniform ' of does x ,x : ... , ( 2^19 ) , llogp ) ] § my year E , 'Yg ; 9(7si¢b µ a , ) ) ) , ,[ logqcp :o) T - ( End Assume ' . ' we can this with VB do

  9. Stochastic Inference Variational For TL DR conditionally : exponential 's conjugate models family compute natural gradient we a can i. -7 ] LCD ) Ing I kit Eq = - , , , Efnglx d) D ) ( ' tea at d , 7 ,7a ) + = , , a [ Sufficient statistics This yields updates gradient It - ft ) i ft Ega ; Mg " it 'd ) It It - ' 'll gtv , fly . ) + = =

  10. Xz Iz Natural Gradients Invariance Coordinate : Suppose have Example equivalent two : we coordinates sets of × × , , ~ ~ ×2 - - × = = 62 1 6 , ~ X x . . - ( ¥i+¥ , ) Kite Llx LCI ) ,xd= ,I.l= , . ,

  11. Gradient Values Change Coordinates with E I I Xz I = , 6 , I • I / = , % 62 x . - ( ¥i + fig ) Kite L( LCI ) x. I ,Ii x. = = . , = 's 2£ 2£ off ¥ ¥ = = - . , 2 6,2 × , , , , ¥ It zxi I Off 2g = = = . . 2×~ 622 , ,

  12. Gradients Invariant Coordinate - Idea Can define notice of steepest descent : we a ? transformations that coordinate Variate under is in ÷¥÷÷÷÷s P×LCx ) SEZ dxt t dxtdx DX anguish 5. = . dx L PIL d dxt DET 0×1 = = Matrix Jacobian partial of derivatives : ⇐ i :÷÷÷÷÷l

  13. Gradients Invariant Coordinate - Observation and gradients : Differentials be transformed the rule chain using can = § J de dxi j de = ; JTJ dxtdx DE DET = 2x Ex f Txt . I = . Qi ; , ; JT Qi Tx =

  14. . ya Gradients Invariant Coordinate - Polar Example coordinates ; .int Xz J t it " Cos ' 1%1=1 : ÷ yo d#TJd i , . O Xz r sin - - Sino & r distance cos G metric dx ? dxtdx dx ' = = + , ) I " , ] I day ) do ! - dr [ on ' dr ? do = n = t

  15. Gradients Invariant Coordinate - Assumption KIKI along de points : (0×214)+(0×141) DE LCE ) 0×1×1 Ifl dx JT x ) = = 't Tx fix DILE DELK J ) ) DE , = = (0×-2679554%4×7) de xt ELK , = = COILED 'T0eLM ) =/

  16. Gradients Invariant Coordinate - a' ET Solution Define natural gradient : By LCE I " ( ELLI JTJ ) LIE T , ) DE = = 8×11×1 7×11×1 dx = = - the IT 6£ ' ) ) - L (E) J J LCE = , ^ \ T (0×26)/55 ' JTT×Lc× , = )T0×[ independent L ( 0×21×1 - C x ) dxt K ) = = → Change five ob.ec of is in Lordi nates of choice

  17. Natural Gradients Vaniational Inference in Distance Metric KL Symmetric divergence ; KL "mld,7 , ,llg9g"h¥aI 't Ear = + Ftaanoillgag "hs¥ts ) KL "m( 7. di ) ddt 6C 7) di � 1 � + = Felli Gilb ) Lt ) 0 , ) =

  18. Gradients Invariant Coordinate - Polar Example coordinates ; -1.1=1 Xz " xi C xi ~ t.n.yx.nl I ' n × . do ' ' J case =/ " - is f sing - cage s - Fa . fusion ° ' =

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend