1 st automotive workshop oxford uk
play

1 st Automotive Workshop, Oxford, UK Paul Batten, Jian Wang & - PowerPoint PPT Presentation

1 st Automotive Workshop, Oxford, UK Paul Batten, Jian Wang & Oshin Peroomian Dec. 11/12, 2019 1 Overview Challenges Software Case 1 Case 2A Summary 2 Challenges Attached BLs Massive Small/shallow


  1. 1 st Automotive Workshop, Oxford, UK Paul Batten, Jian Wang & Oshin Peroomian Dec. 11/12, 2019 1

  2. Overview Challenges • Software • Case 1 • Case 2A • Summary • 2

  3. Challenges Attached BLs Massive Small/shallow separation separation N.B. In anticipation of the various separation types and extents, hybrid RANS/LES simulations that used IDDES imposed a box over the forward sections of the simulated vehicles in which IDDES was maintained in RANS 3 mode (this is referred to as an “LES deactivation box”)

  4. Software • CFD Solver Used: CFD++ by Metacomp Technologies, Inc. • Steady-state and transient finite-volume solutions • Linear eddy-viscosity RANS models • Non-linear eddy viscosity (EARSM) RANS models • Hybrid RANS/LES (DDES and IDDES) • Meshing Software: MIME by Metacomp Technologies, Inc. • Multipurpose Intelligent Meshing Environment • General size automation and curvature-based refinement • Hex-dominant meshes • Solve-to-wall meshes created for each MIME mesh 4

  5. Case 1 - Models • RANS: • SA • SARC+QCR • Realizable k-epsilon (RKE) • Cubic k-epsilon (CKE/cubic k- e EARSM) • SST • Hellsten (quartic k- w EARSM) • Hybrid RANS/LES • IDDES + LES deactivation box 5

  6. Case 1 - Meshes • Workshop RANS Mesh: 4 M cells • Half-model mesh (plus symmetry plane) • y + > 1 over much of the body • Large spacings near underside wedge/ramp • • MIME RANS Meshes: Three half-model meshes generated: coarse (5M), medium (10M), fine (15M) • Only fine-mesh results presented in subsequent slides • y + < 1 everywhere, for all three meshes • 6 MIME fine RANS half-mesh

  7. Case 1 - Meshes • Workshop Hybrid RANS/LES Mesh: 30.6 M • Full-model mesh • Growth rate 1.15, 30 cell layers in BL • Cell size at rear refined region = 1.7 mm, base (1.2 mm), underbody (2.4 • mm), ground (4.8 mm), rear window (1.2 mm), top and front (2.4 mm) First layer height = 3.7e-5m • 7

  8. Case 1 - Meshes • MIME Hybrid RANS/LES Mesh: 99 M • Full-model mesh • Growth rate 1.17, 45 cell layers in BL • Cell size at rear refined region = 1.7 mm, base (1.2 mm), underbody (2.4 • mm), ground (4.8 mm), rear window (1.2 mm), top and front (2.4 mm) First layer height = 7.5e-6 m • 8

  9. Case 1 - RANS Convergence on Fine MIME Mesh Realizable k-epsilon 9 Cubic k-epsilon

  10. Case 1 - Convergence on Fine MIME RANS Mesh SA 10 SARC+QCR

  11. Case 1 - Convergence on Fine MIME RANS Mesh SST 11 Hellsten

  12. Case 1 - IDDES Force History for Fine MIME Hybrid RANS/LES Mesh IDDES 12

  13. Case 1 - Selected Mesh- Convergence Plots: C d 0.24 CKE 0.22 SARC+QCR SA 0.2 Cd RKE 0.18 SST 0.16 0.14 0 2 4 6 8 10 12 14 16 Million Cells 13

  14. Case 1 - Selected Mesh- Convergence Plots: C l -0.055 CKE -0.065 SARC+QCR -0.075 SA CL -0.085 RKE -0.095 SST -0.105 -0.115 0 2 4 6 8 10 12 14 16 Million Cells 14

  15. Case 1 - Cp Centerline Distribution Realizable k-epsilon Cubic k-epsilon N.B. Red dots = Experiment 15

  16. Case 1 - Cp Centerline Distribution SA SARC+QCR N.B. Red dots = Experiment 16

  17. Case 1 - Cp Centerline Distribution SST Hellsten N.B. Red dots = Experiment 17

  18. Case 1 - Cp Centerline Distribution DDES IDDES + box N.B. Red dots = Experiment 18

  19. Case 1 - Wake Profiles Exp. Realizable k-epsilon 19

  20. Case 1 - Wake Profiles Exp. Realizable k-epsilon 20

  21. Case 1 - Wake Profiles Exp. Cubic k-epsilon 21

  22. Case 1 - Wake Profiles Exp. Cubic k-epsilon 22

  23. Case 1 - Wake Profiles Exp. SA 23

  24. Case 1 - Wake Profiles Exp. SA 24

  25. Case 1 - Wake Profiles Exp. SARC+QCR 25

  26. Case 1 - Wake Profiles Exp. SARC+QCR 26

  27. Case 1 - Wake Profiles Exp. SST 27

  28. Case 1 - Wake Profiles Exp. SST 28

  29. Case 1 - Wake Profiles Exp. Hellsten 29

  30. Case 1 - Wake Profiles Exp. Hellsten 30

  31. Case 1 - Wake Profiles Exp. DDES 31

  32. Case 1 - Wake Profiles Exp. DDES 32

  33. Case 1 - Wake Profiles Exp. IDDES+box 33

  34. Case 1 - Wake Profiles Exp. IDDES+box 34

  35. Case 1 - IDDES: Normalized Q-Criterion IDDES+box 35

  36. Case 1 - Fine MIME Mesh Results Test Cases Cd Cl Cm Realizable k-epsilon 0.1917 -0.08385 -0.1195 Cubic k-epsilon 0.1844 -0.07547 -0.1121 SA 0.2297 -0.1022 -0.1097 SARC+QCR 0.2339 -0.08895 -0.1189 Hellsten 0.1962 -0.07850 -0.1280 0.2223 ( d =0.006) -0.08457 ( d =0.014) -0.1406 ( d =0.013) SST (Deep convergence not achieved) IDDES coarse (28 M cells) 0.1991 -0.07384 -0.1231 IDDES fine (99 M cells) 0.2002 -0.07624 -0.1218 D. Wood, SAE 2014-01-0590, 2014 0.210 0.055 ß ? D. Wood, PhD Thesis, 2015 0.210 -0.035 (-0.0250 ~ - ß ? 0.0465) 36

  37. Case 2A - Models • RANS: • SA • Realizable k-epsilon (RKE) • SST • Hellsten (quartic k- w EARSM) • Hybrid RANS/LES • IDDES (unmodified - for demonstration purposes only) • IDDES + LES deactivation box 37

  38. Case 2A RANS Forces – Coarse Grid Instantaneous C d - Coarse Grid Instantaneous C l - Coarse Grid 0 . 5 0 . 2 SA SA 0 . 4 RKE RKE SST SST 0 . 1 Hellsten Hellsten 0 . 3 C d C l 0 . 2 0 . 0 0 . 1 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 Iteration Iteration 38

  39. Case 2A RANS Forces – Medium Grid Instantaneous C d - Medium Grid Instantaneous C l - Medium Grid 0 . 5 0 . 2 SA SA 0 . 4 RKE RKE SST SST 0 . 1 Hellsten Hellsten 0 . 3 C d C l 0 . 2 0 . 0 0 . 1 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 Iteration Iteration 39

  40. Case 2A RANS Forces – Fine Grid Instantaneous C d - Fine Grid Instantaneous C l - Fine Grid 0 . 5 0 . 2 SA SA 0 . 4 RKE RKE SST SST 0 . 1 Hellsten Hellsten 0 . 3 C d C l 0 . 2 0 . 0 0 . 1 500 1000 1500 2000 2500 500 1000 1500 2000 2500 Iteration Iteration 40

  41. Case 2A IDDES Forces – Fine Grid 41

  42. Case 2A Mean Forces – Coarse Grid Cumulative Mean C d - Coarse Grid Cumulative Mean C l - Coarse Grid 0 . 2 SA SA RKE RKE 0 . 1 SST SST Hellsten Hellsten 0 . 25 C d 0 . 0 C l − 0 . 1 0 . 20 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 Iteration Iteration 42

  43. RANS Mean Forces – Medium Grid Cumulative Mean C d - Medium Grid Cumulative Mean C l - Medium Grid 0 . 2 SA SA RKE RKE 0 . 1 SST SST Hellsten Hellsten 0 . 25 C d 0 . 0 C l − 0 . 1 0 . 20 200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400 Iteration Iteration 43

  44. RANS Mean Forces – Fine Grid Cumulative Mean C d - Fine Grid Cumulative Mean C l - Fine Grid 0 . 2 SA SA RKE RKE 0 . 1 SST SST Hellsten Hellsten 0 . 25 C d 0 . 0 C l − 0 . 1 0 . 20 500 1000 1500 2000 2500 500 1000 1500 2000 2500 Iteration Iteration 44

  45. Hellsten Model Forces – All Grids Hellsten Model - C d Hellsten Model - C l 0 . 250 0 . 08 Coarse Coarse 0 . 245 Medium Medium Fine 0 . 06 Fine 0 . 240 C d C l 0 . 04 0 . 235 0 . 02 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 Iterations Iterations N.B. C l still not well converged on fine mesh! 45

  46. Case 2A - Mesh Convergence 46

  47. IDDES Mean Forces – Fine Grid 47

  48. Wake Profiles – Fine Mesh SA RKE SST IDDES (no box) IDDES + box Hellsten 48

  49. Centerline Cp – Upper Surface 49

  50. Centerline Cp – Lower Surface 50

  51. Separation Isosurfaces Realizable k-epsilon SST SA IDDES (no box) IDDES + box Hellsten 51

  52. Spanwise Vorticity Realizable k-epsilon SA SST Hellsten IDDES (no box) IDDES + box 52

  53. IDDES - No Box : NQcrit Normalized Q-Criterion 53

  54. IDDES + Box : NQcrit Normalized Q-Criterion 54

  55. Case 2A - Fine Workshop Mesh Results Test Cases Cd Cl Realizable k-epsilon 0.2097 0.01375 * SA 0.2231 0.01870 * SST 0.2363 0.004877 ** Hellsten 0.2418 0.003583 * IDDES (default, no box) 0.2668 -0.003056 * IDDES + box 0.2512 0.003518 Exp. 0.243 * Results not well converged 55

  56. Summary Case 1: Convergence (other than SST) + mesh convergence demonstrated Hellsten RANS model looks promising IDDES required an LES-deactivation box to avoid partial collapse of the boundary layer prior to the main (rear) separation Case 2: Deep convergence challenging with RANS Mesh convergence not convincingly demonstrated using the three workshop-supplied grids Hellsten RANS model again looks promising IDDES again required use of an LES-deactivation box 56

  57. Thank you J 57

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend