1
play

1 08.06.2010 ECCM 2010 Outline Numerical expectations Effect of - PowerPoint PPT Presentation

DAMAGE IN TEXTILE LAMINATES OF VARIOUS INTER-PLY SHIFT Dmitry S. IVANOV, Yao DING, Larissa GORBATIKH, Stepan V. LOMOV, Ignaas VERPOEST Katholieke Universiteit Leuven, Belgium Department of Metallurgy and Materials Engineering Composite


  1. DAMAGE IN TEXTILE LAMINATES OF VARIOUS INTER-PLY SHIFT Dmitry S. IVANOV, Yao DING, Larissa GORBATIKH, Stepan V. LOMOV, Ignaas VERPOEST Katholieke Universiteit Leuven, Belgium Department of Metallurgy and Materials Engineering Composite Materials Group 1 08.06.2010 ECCM 2010

  2. Outline � Numerical expectations � Effect of stacking sequence: experiments Thermal crack – Acoustic emission: energy, events – Crack density – Macro properties – � Mechanisms of deformation: FE analysis Numerical expectations – New modelling concept for modelling arbitrary stacking – Results – 2

  3. ε init Numerical expectations Strain at… , % Periodic Step Stairs Symmetric Intra-yarn crack, Puck 0.15 0.19 0.22 0.26 criterion, weft Intra-yarn crack, Puck 0.25 0.33 0.37 0.38 criterion, warp Inter-yarn delamination 0.34 0.48 0.70 0.86 onset, Mohr-Coulomb 1.13 1.13 0.95 0.95 0.89 0.89 0.87 0.87 Fibre Fibre failure, failure, Max- Max- Stress, warp Unbalanced twill carbon-epoxy composites, 6 plies 3

  4. Mechanisms of deformation Uniaxial stress state within the Tensile + local shear in the 0- 0-yarns yarns = higher stress along fibres Strong shear in the intra-yarn space = higher probability for Zero shear in the intra-yarn inta-ply matrix failure space 4

  5. Outline � Numerical expectations � Effect of stacking sequence: experiments Thermal crack – Acoustic emission: energy, events – Crack density – Macro properties – � Mechanisms of deformation: FE analysis Numerical expectations – New modelling concept for modelling arbitrary stacking – Results – 5

  6. Stacking effects: manufacturing Glass plain weave, 850 g/m 2 , RTM, epoxy, 4 plies, t=3.1 mm 16 × 17 mm unit cell, Maximum inclination = 9.4 ° In-phase = periodical stacking 6 Out-of-phase = symmetrical stacking

  7. Stacking effects: manufacturing Glass plain weave, 850 g/m 2 , RTM, epoxy, 4 plies, t=3.1 mm 16 × 17 mm unit cell, Maximum inclination = 9.4 ° In-phase = periodical stacking 7 Out-of-phase = symmetrical stacking

  8. Stacking effects: Thermal cracks Thermal cracking Presence of the intra-yarn cracks: out-of phase only (at the outer plies – through the yarn width) out-of phase in-of phase 8

  9. Stacking effects: Acoustic emission events In-phase: periodic stacking ε 2 1,0E+09 300 300 1,0E+08 ε 1 number of events in-phase 250 250 1,0E+07 out-of-phase 200 1,0E+06 200 Energy [eu] Stress [MPa] 1,0E+05 150 150 1,0E+04 100 1,0E+03 100 1,0E+02 Energy 50 50 Cumulative 1,0E+01 0 0 Stress Stress 1,0E+00 0 Total after ε 2 before ε 1 between number of ε 1 and ε 2 0,00E+00 5,00E-03 1,00E-02 1,50E-02 2,00E-02 2,50E-02 3,00E-02 events Strain Out-of-phase, symmetric stacking ε 2 1,0E+08 250 Big difference in the number 1,0E+07 ε 1 200 1,0E+06 of AE events: Energy [eu] 1,0E+05 Stress [MPa] 150 In-phase>>Out-of phase 1,0E+04 100 1,0E+03 1,0E+02 Energy 50 Cumulative 1,0E+01 Stress 1,0E+00 0 0,00E+00 5,00E-03 1,00E-02 1,50E-02 2,00E-02 2,50E-02 9 Strain

  10. Stacking effects: Acoustic emission energy Cumulative Energy-Strain 1,0E+10 ε 2 1,0E+09 1,0E+08 ε 1 1,0E+07 nergy(eu) In1_2 1,0E+06 In1_3 1,0E+05 In1_4 In1_4 En 1,0E+04 In2_1 1,0E+03 In2_2 ε min 1,0E+02 out1_3 out1_4 1,0E+01 Out1_5 1,0E+00 0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016 Strain Big difference in the energy of AE events: In-phase>>Out-of phase 10

  11. Stacking effects: Crack density Distance between the cracks: 1,8 1,6 1,4 k distance (mm) 1,2 1 0,8 crack 0,6 0,4 0,2 0 in-phase_CNTs in-phase out-of-phase Higher crack density (factor 2) in: In-phase >> Out-of phase 11

  12. Stacking effects: Strength/ ultimate strain 3 300 250 2,6 200 Stress (MPa) 2,2 Strain (%) 150 1,8 100 1,4 In-phase-CNTs In-phase 50 Out-of-phase Out-of-phase 1 0 Strain Strength �������� ������������ ������������� ���������������� ����� ± �! � !"� ± ���# � $"� ± !�� ����� %�&����� �'� ± #(" �"� ± ��(! ��� ± �'( ����� )��*�������&�*� �("! ± �(� # �(�" ± �(��! �(�# ± �(�$� �+� ��*�������&��*� �(�!' ± �(��� �(�$ ± �(�� �(�## ± �(��� 12 Slightly lower strength for out-of phase

  13. Comparison of 1-ply and 4-ply composites Approaching of 4-ply composite curve to the 1-ply composite curve: effect of delaminations σ , MPa 4-ply composite 1-ply composite ε , % 13 NB: a different glass-epoxy PW composite

  14. Outline � Numerical expectations � Effect of stacking sequence: experiments Thermal crack – Acoustic emission: energy, events – Crack density – Macro properties – � Mechanisms of deformation: FE analysis Numerical expectations – New modelling concept for modelling arbitrary stacking – Results – 14

  15. Superposition of periodic profiles To set the correct boundary conditions we have to predict the laminate deformed shape “Step” ~ ∞ u Periodic profile. Ply 1 z ~ ∞ u Periodic profile. Ply 2 z Superimposed profile � � � N 1 ∑ ~ ~ ( ) ( ) ∞ s = + u x u x s z z i N = i 1 Deformed profile of a textile laminate can be presented as a arithmetic average of periodic profiles for each of the plies 15

  16. Actual and predicted profiles Superimposed/predicted ~ profile u z µ , m “Step”-wise shift x , mm 1 Profiles along the inter-layer boundaries Average profile in the laminate Predicted and average profiles are proportional ⇒ Energy-based scaling is also applicable here ⇒ ⇒ ⇒ 16 The scatter of the profiles is bigger than in the periodic stacking

  17. New BC’s Outer and inner unit cells Energy of effective medium ( ) = σ ε + − σ ε E 2 N 2 11 11 11 11 E outer outer inner inner Energy of heterogeneous medium ( ) = σ ε + − σ ε E 2 N 2 H ij ij ij ij outer inner Deviation from the balance ( ) ∆ λ = − E E E H E Minimisation of the deviation Optimum scaling coefficients Number of the plies, N 2 3 4 5 6 Reference solutions 1.725 1.383 1.273 1.210 1.160 17 Numerical procedure 1.709 1.375 1.253 1.190 1.153

  18. σ yz σ σ y x Results: FFE vs. ply solution Layer Outer Outer Outer Inner Inner Inner position Configur Step Stairs Periodic Step Stairs Periodic ation Transverse stress, warp, [MPa] FFE 60.3–157.6 84.1–161.5 47.1–132.3 74.0–145.8 103.2-169.4 59.5-123.1 UCA 65.3 – 153.9 100.2 – 167.1 46.8 – 130.2 78.1 – 144.4 111.3 – 170.1 54.8 – 121.2 Transverse stress, weft, [MPa] Transverse stress, weft, [MPa] FFE 3.7 – 15.1 3.2 – 12.7 3.2 – 15.1 4.7 – 12.3 4.3 – 10.7 3.9 – 15.7 UCA 2.6 – 13.2 3.2 – 11.4 3.4 – 14.7 3.1 – 13.9 5.3 – 12.4 3.5 – 15.6 Out-of plane shear stress, weft, [MPa] FFE -5.3 – 5.9 -3.5 – 3.6 -8.6–8.6 -6.0 – 6.0 -2.4 – 2.1 -9.5 – 9.5 UCA -6.4–6.4 -2.8 – 2.8 -8.9 – 8.9 -6.6 – 6.6 -2.2 – 2.2 -9.7 – 9.7 Good coincidence of the reference full scale solution with “the one-ply +BC” approach 18

  19. The new scheme: � Distinguish between the outer and inner plies � Account for the number of plies in the composite � Account for the stacking of the composite � Give results with a good precision at low � Give results with a good precision at low computational cost � Potentially convenient instrument for modelling of the delaminations � Efficient to model woven laminates with (0, ±45) ° laminates 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend